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PREFACE

This book is both a tutorial and a textbook. This book presents an introduc-
tion to probability and mathematical statistics and it is intended for students
already having some elementary mathematical background. It is intended for
a one-year junior or senior level undergraduate or beginning graduate level
course in probability theory and mathematical statistics. The book contains
more material than normally would be taught in a one-year course. This
should give the teacher flexibility with respect to the selection of the content
and level at which the book is to be used. This book is based on over 15
years of lectures in senior level calculus based courses in probability theory
and mathematical statistics at the University of Louisville.

Probability theory and mathematical statistics are difficult subjects both
for students to comprehend and teachers to explain. Despite the publication
of a great many textbooks in this field, each one intended to provide an im-
provement over the previous textbooks, this subject is still difficult to com-
prehend. A good set of examples makes these subjects easy to understand.
For this reason alone I have included more than 350 completely worked out
examples and over 165 illustrations. I give a rigorous treatment of the fun-
damentals of probability and statistics using mostly calculus. I have given
great attention to the clarity of the presentation of the materials. In the
text, theoretical results are presented as theorems, propositions or lemmas,
of which as a rule rigorous proofs are given. For the few exceptions to this
rule references are given to indicate where details can be found. This book
contains over 450 problems of varying degrees of difficulty to help students
master their problem solving skill.

In many existing textbooks, the examples following the explanation of
a topic are too few in number or too simple to obtain a through grasp of
the principles involved. Often, in many books, examples are presented in
abbreviated form that leaves out much material between steps, and requires
that students derive the omitted materials themselves. As a result, students
find examples difficult to understand. Moreover, in some textbooks, examples
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are often worded in a confusing manner. They do not state the problem and
then present the solution. Instead, they pass through a general discussion,
never revealing what is to be solved for. In this book, I give many examples
to illustrate each topic. Often we provide illustrations to promote a better
understanding of the topic. All examples in this book are formulated as
questions and clear and concise answers are provided in step-by-step detail.

There are several good books on these subjects and perhaps there is
no need to bring a new one to the market. So for several years, this was
circulated as a series of typeset lecture notes among my students who were
preparing for the examination 110 of the Actuarial Society of America. Many
of my students encouraged me to formally write it as a book. Actuarial
students will benefit greatly from this book. The book is written in simple
English; this might be an advantage to students whose native language is not
English.

I cannot claim that all the materials I have written in this book are mine.
I have learned the subject from many excellent books, such as Introduction
to Mathematical Statistics by Hogg and Craig, and An Introduction to Prob-
ability Theory and Its Applications by Feller. In fact, these books have had
a profound impact on me, and my explanations are influenced greatly by
these textbooks. If there are some similarities, then it is due to the fact
that I could not make improvements on the original explanations. I am very
thankful to the authors of these great textbooks. I am also thankful to the
Actuarial Society of America for letting me use their test problems. I thank
all my students in my probability theory and mathematical statistics courses
from 1988 to 2005 who helped me in many ways to make this book possible
in the present form. Lastly, if it weren’t for the infinite patience of my wife,
Sadhna, this book would never get out of the hard drive of my computer.

The author on a Macintosh computer using TEX, the typesetting system
designed by Donald Knuth, typeset the entire book. The figures were gener-
ated by the author using MATHEMATICA, a system for doing mathematics
designed by Wolfram Research, and MAPLE, a system for doing mathemat-
ics designed by Maplesoft. The author is very thankful to the University of
Louisville for providing many internal financial grants while this book was
under preparation.

Prasanna Sahoo, Louisville
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Chapter 1

PROBABILITY OF EVENTS

1.1. Introduction

During his lecture in 1929, Bertrand Russel said, “Probability is the most
important concept in modern science, especially as nobody has the slightest
notion what it means.” Most people have some vague ideas about what prob-
ability of an event means. The interpretation of the word probability involves
synonyms such as chance, odds, uncertainty, prevalence, risk, expectancy etc.
“We use probability when we want to make an affirmation, but are not quite
sure,” writes J.R. Lucas.

There are many distinct interpretations of the word probability. A com-
plete discussion of these interpretations will take us to areas such as phi-
losophy, theory of algorithm and randomness, religion, etc. Thus, we will
only focus on two extreme interpretations. One interpretation is due to the
so-called objective school and the other is due to the subjective school.

The subjective school defines probabilities as subjective assignments
based on rational thought with available information. Some subjective prob-
abilists interpret probabilities as the degree of belief. Thus, it is difficult to
interpret the probability of an event.

The objective school defines probabilities to be “long run” relative fre-
quencies. This means that one should compute a probability by taking the
number of favorable outcomes of an experiment and dividing it by total num-
bers of the possible outcomes of the experiment, and then taking the limit
as the number of trials becomes large. Some statisticians object to the word
“long run”. The philosopher and statistician John Keynes said “in the long
run we are all dead”. The objective school uses the theory developed by
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Von Mises (1928) and Kolmogorov (1965). The Russian mathematician Kol-
mogorov gave the solid foundation of probability theory using measure theory.
The advantage of Kolmogorov’s theory is that one can construct probabilities
according to the rules, compute other probabilities using axioms, and then
interpret these probabilities.

In this book, we will study mathematically one interpretation of prob-
ability out of many. In fact, we will study probability theory based on the
theory developed by the late Kolmogorov. There are many applications of
probability theory. We are studying probability theory because we would
like to study mathematical statistics. Statistics is concerned with the de-
velopment of methods and their applications for collecting, analyzing and
interpreting quantitative data in such a way that the reliability of a con-
clusion based on data may be evaluated objectively by means of probability
statements. Probability theory is used to evaluate the reliability of conclu-
sions and inferences based on data. Thus, probability theory is fundamental
to mathematical statistics.

For an event A of a discrete sample space S, the probability of A can be
computed by using the formula

P (A) =
N(A)
N(S)

where N(A) denotes the number of elements of A and N(S) denotes the
number of elements in the sample space S. For a discrete case, the probability
of an event A can be computed by counting the number of elements in A and
dividing it by the number of elements in the sample space S.

In the next section, we develop various counting techniques. The branch
of mathematics that deals with the various counting techniques is called
combinatorics.

1.2. Counting Techniques

There are three basic counting techniques. They are multiplication rule,
permutation and combination.

1.2.1 Multiplication Rule. If E1 is an experiment with n1 outcomes
and E2 is an experiment with n2 possible outcomes, then the experiment
which consists of performing E1 first and then E2 consists of n1n2 possible
outcomes.
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Example 1.1. Find the possible number of outcomes in a sequence of two
tosses of a fair coin.

Answer: The number of possible outcomes is 2 · 2 = 4. This is evident from
the following tree diagram.

Example 1.2. Find the number of possible outcomes of the rolling of a die
and then tossing a coin.

Answer: Here n1 = 6 and n2 = 2. Thus by multiplication rule, the number
of possible outcomes is 12.

Example 1.3. How many different license plates are possible if Kentucky
uses three letters followed by three digits.

Answer:
(26)3 (10)3

= (17576) (1000)

= 17, 576, 000.

1.2.2. Permutation

Consider a set of 4 objects. Suppose we want to fill 3 positions with
objects selected from the above 4. Then the number of possible ordered
arrangements is 24 and they are
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a b c b a c c a b d a b
a b d b a d c a d d a c
a c b b c a c b a d b c
a c d b c d c b d d b a
a d c b d a c d b d c a
a d b b d c c d a d c b

The number of possible ordered arrangements can be computed as follows:
Since there are 3 positions and 4 objects, the first position can be filled in
4 different ways. Once the first position is filled the remaining 2 positions
can be filled from the remaining 3 objects. Thus, the second position can be
filled in 3 ways. The third position can be filled in 2 ways. Then the total
number of ways 3 positions can be filled out of 4 objects is given by

(4) (3) (2) = 24.

In general, if r positions are to be filled from n objects, then the total
number of possible ways they can be filled are given by

n(n− 1)(n− 2) · · · (n− r + 1)

=
n!

(n− r)!
= nPr.

Thus, nPr represents the number of ways r positions can be filled from n

objects.

Definition 1.1. Each of the nPr arrangements is called a permutation of n

objects taken r at a time.

Example 1.4. How many permutations are there of all three of letters a, b,
and c?

Answer:

3P3 =
n!

(n− r)!

=
3!
0!

= 6
.
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Example 1.5. Find the number of permutations of n distinct objects.

Answer:

nPn =
n!

(n− n)!
=

n!
0!

= n!.

Example 1.6. Four names are drawn from the 24 members of a club for the
offices of President, Vice-President, Treasurer, and Secretary. In how many
different ways can this be done?

Answer:

24P4 =
(24)!
(20)!

= (24) (23) (22) (21)

= 255, 024.

1.2.3. Combination

In permutation, order is important. But in many problems the order of
selection is not important and interest centers only on the set of r objects.

Let c denote the number of subsets of size r that can be selected from
n different objects. The r objects in each set can be ordered in rPr ways.
Thus we have

nPr = c (rPr) .

From this, we get

c = nPr

rPr
=

n!
(n− r)! r!

The number c is denoted by
(n

r

)
. Thus, the above can be written as

(
n

r

)
=

n!
(n− r)! r!

.

Definition 1.2. Each of the
(n

r

)
unordered subsets is called a combination

of n objects taken r at a time.

Example 1.7. How many committees of two chemists and one physicist can
be formed from 4 chemists and 3 physicists?
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Answer:

(
4
2

)(
3
1

)

= (6) (3)

= 18.

Thus 18 different committees can be formed.

1.2.4. Binomial Theorem

We know from lower level mathematics courses that

(x + y)2 = x2 + 2 xy + y2

=
(

2
0

)
x2 +
(

2
1

)
xy +
(

2
2

)
y2

=
2∑

k=0

(
2
k

)
x2−k yk.

Similarly

(x + y)3 = x3 + 3 x2y + 3xy2 + y3

=
(

3
0

)
x3 +
(

3
1

)
x2y +
(

3
2

)
xy2 +
(

3
3

)
y3

=
3∑

k=0

(
3
k

)
x3−k yk.

In general, using induction arguments, we can show that

(x + y)n =
n∑

k=0

(
n

k

)
xn−k yk.

This result is called the Binomial Theorem. The coefficient
(n

k

)
is called the

binomial coefficient. A combinatorial proof of the Binomial Theorem follows.
If we write (x + y)n as the n times the product of the factor (x + y), that is

(x + y)n = (x + y) (x + y) (x + y) · · · (x + y),

then the coefficient of xn−kyk is
(n

k

)
, that is the number of ways in which we

can choose the k factors providing the y’s.
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Remark 1.1. In 1665, Newton discovered the Binomial Series. The Binomial
Series is given by

(1 + y)α = 1 +
(
α

1

)
y +
(
α

2

)
y2 + · · · +

(
α

n

)
yn + · · ·

= 1 +
∞∑

k=1

(
α

k

)
yk,

where α is a real number and
(
α

k

)
=
α(α− 1)(α− 2) · · · (α− k + 1)

k!
.

This
(α

k

)
is called the generalized binomial coefficient.

Now, we investigate some properties of the binomial coefficients.

Theorem 1.1. Let n ∈ N (the set of natural numbers) and r = 0, 1, 2, ..., n.
Then (

n

r

)
=
(

n

n− r

)
.

Proof: By direct verification, we get
(

n

n− r

)
=

n!
(n− n + r)! (n− r)!

=
n!

r! (n− r)!

=
(

n

r

)
.

This theorem says that the binomial coefficients are symmetrical.

Example 1.8. Evaluate
(3
1

)
+
(3
2

)
+
(3
0

)
.

Answer: Since the combinations of 3 things taken 1 at a time are 3, we get(3
1

)
= 3. Similarly,

(3
0

)
is 1. By Theorem 1,

(
3
1

)
=
(

3
2

)
= 3.

Hence (
3
1

)
+
(

3
2

)
+
(

3
0

)
= 3 + 3 + 1 = 7.
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Theorem 1.2. For any positive integer n and r = 1, 2, 3, ..., n, we have
(

n

r

)
=
(

n− 1
r

)
+
(

n− 1
r − 1

)
.

Proof:
(1 + y)n = (1 + y) (1 + y)n−1

= (1 + y)n−1 + y (1 + y)n−1

n∑

r=0

(
n

r

)
yr =

n−1∑

r=0

(
n− 1

r

)
yr + y

n−1∑

r=0

(
n− 1

r

)
yr

=
n−1∑

r=0

(
n− 1

r

)
yr +

n−1∑

r=0

(
n− 1

r

)
yr+1.

Equating the coefficients of yr from both sides of the above expression, we
obtain (

n

r

)
=
(

n− 1
r

)
+
(

n− 1
r − 1

)

and the proof is now complete.

Example 1.9. Evaluate
(23
10

)
+
(23

9

)
+
(24
11

)
.

Answer:

(
23
10

)
+
(

23
9

)
+
(

24
11

)

=
(

24
10

)
+
(

24
11

)

=
(

25
11

)

=
25!

(14)! (11)!
= 4, 457, 400.

Example 1.10. Use the Binomial Theorem to show that
n∑

r=0

(−1)r

(
n

r

)
= 0.

Answer: Using the Binomial Theorem, we get

(1 + x)n =
n∑

r=0

(
n

r

)
xr
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for all real numbers x. Letting x = −1 in the above, we get

0 =
n∑

r=0

(
n

r

)
(−1)r.

Theorem 1.3. Let m and n be positive integers. Then

k∑

r=0

(
m

r

)(
n

k − r

)
=
(

m + n

k

)
.

Proof:
(1 + y)m+n = (1 + y)m (1 + y)n

m+n∑

r=0

(
m + n

r

)
yr =

{
m∑

r=0

(
m

r

)
yr

}{
n∑

r=0

(
n

r

)
yr

}
.

Equating the coefficients of yk from the both sides of the above expression,
we obtain

(
m + n

k

)
=
(

m

0

)(
n

k

)
+
(

m

1

)(
n

k − 1

)
+ · · · +

(
m

k

)(
n

k − k

)

and the conclusion of the theorem follows.

Example 1.11. Show that

n∑

r=0

(
n

r

)2

=
(

2n

n

)
.

Answer: Let k = n and m = n. Then from Theorem 3, we get

k∑

r=0

(
m

r

)(
n

k − r

)
=
(

m + n

k

)

n∑

r=0

(
n

r

)(
n

n− r

)
=
(

2n

n

)

n∑

r=0

(
n

r

)(
n

r

)
=
(

2n

n

)

n∑

r=0

(
n

r

)2

=
(

2n

n

)
.
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Theorem 1.4. Let n be a positive integer and k = 1, 2, 3, ..., n. Then
(

n

k

)
=

n−1∑

m=k−1

(
m

k − 1

)
.

Proof: In order to establish the above identity, we use the Binomial Theorem
together with the following result of the elementary algebra

xn − yn = (x− y)
n−1∑

k=0

xkyn−1−k.

Note that
n∑

k=1

(
n

k

)
xk =

n∑

k=0

(
n

k

)
xk − 1

= (x + 1)n − 1n by Binomial Theorem

= (x + 1− 1)
n−1∑

m=0

(x + 1)m by above identity

= x
n−1∑

m=0

m∑

j=0

(
m

j

)
xj

=
n−1∑

m=0

m∑

j=0

(
m

j

)
xj+1

=
n∑

k=1

n−1∑

m=k−1

(
m

k − 1

)
xk.

Hence equating the coefficient of xk, we obtain
(

n

k

)
=

n−1∑

m=k−1

(
m

k − 1

)
.

This completes the proof of the theorem.
The following result

(x1 + x2 + · · · + xm)n =
∑

n1+n2+···+nm=n

(
n

n1, n2, ..., nm

)
xn1

1 xn2
2 · · ·xnm

m

is known as the multinomial theorem and it generalizes the binomial theorem.
The sum is taken over all positive integers n1, n2, ..., nm such that n1 + n2 +
· · · + nm = n, and

(
n

n1, n2, ..., nm

)
=

n!
n1! n2!, ..., nm!

.
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This coefficient is known as the multinomial coefficient.

1.3. Probability Measure

A random experiment is an experiment whose outcomes cannot be pre-
dicted with certainty. However, in most cases the collection of every possible
outcome of a random experiment can be listed.

Definition 1.3. A sample space of a random experiment is the collection of
all possible outcomes.

Example 1.12. What is the sample space for an experiment in which we
select a rat at random from a cage and determine its sex?

Answer: The sample space of this experiment is

S = {M, F}

where M denotes the male rat and F denotes the female rat.

Example 1.13. What is the sample space for an experiment in which the
state of Kentucky picks a three digit integer at random for its daily lottery?

Answer: The sample space of this experiment is

S = {000, 001, 002, · · · · · · , 998, 999}.

Example 1.14. What is the sample space for an experiment in which we
roll a pair of dice, one red and one green?

Answer: The sample space S for this experiment is given by

S =

{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

This set S can be written as

S = {(x, y) | 1 ≤ x ≤ 6, 1 ≤ y ≤ 6}

where x represents the number rolled on red die and y denotes the number
rolled on green die.
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Definition 1.4. Each element of the sample space is called a sample point.

Definition 1.5. If the sample space consists of a countable number of sample
points, then the sample space is said to be a countable sample space.

Definition 1.6. If a sample space contains an uncountable number of sample
points, then it is called a continuous sample space.

An event A is a subset of the sample space S. It seems obvious that if A

and B are events in sample space S, then A∪B, Ac, A∩B are also entitled
to be events. Thus precisely we define an event as follows:

Definition 1.7. A subset A of the sample space S is said to be an event if it
belongs to a collection F of subsets of S satisfying the following three rules:
(a) S ∈ F ; (b) if A ∈ F then Ac ∈ F ; and (c) if Aj ∈ F for j ≥ 1, then⋃∞

j=1 ∈ F . The collection F is called an event space or a σ-field. If A is the
outcome of an experiment, then we say that the event A has occurred.

Example 1.15. Describe the sample space of rolling a die and interpret the
event {1, 2}.

Answer: The sample space of this experiment is

S = {1, 2, 3, 4, 5, 6}.

The event {1, 2} means getting either a 1 or a 2.

Example 1.16. First describe the sample space of rolling a pair of dice,
then describe the event A that the sum of numbers rolled is 7.

Answer: The sample space of this experiment is

S = {(x, y) |x, y = 1, 2, 3, 4, 5, 6}

and
A = {(1, 6), (6, 1), (2, 5), (5, 2), (4, 3), (3, 4)}.

Definition 1.8. Let S be the sample space of a random experiment. A prob-
ability measure P : F → [0, 1] is a set function which assigns real numbers
to the various events of S satisfying

(P1) P (A) ≥ 0 for all event A ∈ F ,
(P2) P (S) = 1,
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(P3) P

( ∞⋃

k=1

Ak

)
=

∞∑

k=1

P (Ak)

if A1, A2, A3, ..., Ak, ..... are mutually disjoint events of S.

Any set function with the above three properties is a probability measure
for S. For a given sample space S, there may be more than one probability
measure. The probability of an event A is the value of the probability measure
at A, that is

Prob(A) = P (A).

Theorem 1.5. If ∅ is a empty set (that is an impossible event), then

P (∅) = 0.

Proof: Let A1 = S and Ai = ∅ for i = 2, 3, ...,∞. Then

S =
∞⋃

i=1

Ai

where Ai ∩Aj = ∅ for i += j. By axiom 2 and axiom 3, we get

1 = P (S) (by axiom 2)

= P

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

P (Ai) (by axiom 3)

= P (A1) +
∞∑

i=2

P (Ai)

= P (S) +
∞∑

i=2

P (∅)

= 1 +
∞∑

i=2

P (∅).

Therefore
∞∑

i=2

P (∅) = 0.

Since P (∅) ≥ 0 by axiom 1, we have

P (∅) = 0
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and the proof of the theorem is complete.

This theorem says that the probability of an impossible event is zero.
Note that if the probability of an event is zero, that does not mean the event
is empty (or impossible). There are random experiments in which there are
infinitely many events each with probability 0. Similarly, if A is an event
with probability 1, then it does not mean A is the sample space S. In fact
there are random experiments in which one can find infinitely many events
each with probability 1.

Theorem 1.6. Let {A1, A2, ..., An} be a finite collection of n events such
that Ai ∩ Ej = ∅ for i += j. Then

P

(
n⋃

i=1

Ai

)
=

n∑

i=1

P (Ai).

Proof: Consider the collection {A′
i}∞i=1 of the subsets of the sample space S

such that
A′

1 = A1, A′
2 = A2, ..., A

′
n = An

and
A′

n+1 = A′
n+2 = A′

n+3 = · · · = ∅.

Hence

P

(
n⋃

i=1

Ai

)
= P

( ∞⋃

i=1

A′
i

)

=
∞∑

i=1

P (A′
i)

=
n∑

i=1

P (A′
i) +

∞∑

i=n+1

P (A′
i)

=
n∑

i=1

P (Ai) +
∞∑

i=n+1

P (∅)

=
n∑

i=1

P (Ai) + 0

=
n∑

i=1

P (Ai)

and the proof of the theorem is now complete.
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When n = 2, the above theorem yields P (A1 ∪ A2) = P (A1) + P (A2)
where A1 and A2 are disjoint (or mutually exclusive) events.

In the following theorem, we give a method for computing probability
of an event A by knowing the probabilities of the elementary events of the
sample space S.

Theorem 1.7. If A is an event of a discrete sample space S, then the
probability of A is equal to the sum of the probabilities of its elementary
events.

Proof: Any set A in S can be written as the union of its singleton sets. Let
{Oi}∞i=1 be the collection of all the singleton sets (or the elementary events)
of A. Then

A =
∞⋃

i=1

Oi.

By axiom (P3), we get

P (A) = P

( ∞⋃

i=1

Oi

)

=
∞∑

i=1

P (Oi).

Example 1.17. If a fair coin is tossed twice, what is the probability of
getting at least one head?

Answer: The sample space of this experiment is

S = {HH, HT, TH, TT}.

The event A is given by

A = { at least one head }
= {HH, HT, TH}.

By Theorem 1.7, the probability of A is the sum of the probabilities of its
elementary events. Thus, we get

P (A) = P (HH) + P (HT ) + P (TH)

=
1
4

+
1
4

+
1
4

=
3
4
.
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Remark 1.2. Notice that here we are not computing the probability of the
elementary events by taking the number of points in the elementary event
and dividing by the total number of points in the sample space. We are
using the randomness to obtain the probability of the elementary events.
That is, we are assuming that each outcome is equally likely. This is why the
randomness is an integral part of probability theory.

Corollary 1.1. If S is a finite sample space with n sample elements and A

is an event in S with m elements, then the probability of A is given by

P (A) =
m

n
.

Proof: By the previous theorem, we get

P (A) = P

(
m⋃

i=1

Oi

)

=
m∑

i=1

P (Oi)

=
m∑

i=1

1
n

=
m

n
.

The proof is now complete.

Example 1.18. A die is loaded in such a way that the probability of the
face with j dots turning up is proportional to j for j = 1, 2, ..., 6. What is
the probability, in one roll of the die, that an odd number of dots will turn
up?

Answer:
P ({j}) ∝ j

= k j

where k is a constant of proportionality. Next, we determine this constant k

by using the axiom (P2). Using Theorem 1.5, we get

P (S) = P ({1}) + P ({2}) + P ({3}) + P ({4}) + P ({5}) + P ({6})
= k + 2k + 3k + 4k + 5k + 6k

= (1 + 2 + 3 + 4 + 5 + 6) k

=
(6)(6 + 1)

2
k

= 21k.



Probability and Mathematical Statistics 17

Using (P2), we get
21k = 1.

Thus k = 1
21 . Hence, we have

P ({j}) =
j

21
.

Now, we want to find the probability of the odd number of dots turning up.

P (odd numbered dot will turn up) = P ({1}) + P ({3}) + P ({5})

=
1
21

+
3
21

+
5
21

=
9
21

.

Remark 1.3. Recall that the sum of the first n integers is equal to n
2 (n+1).

That is,

1 + 2 + 3 + · · · · · · + (n− 2) + (n− 1) + n =
n(n + 1)

2
.

This formula was first proven by Gauss (1777-1855) when he was a young
school boy.

Remark 1.4. Gauss proved that the sum of the first n positive integers
is n (n+1)

2 when he was a school boy. Kolmogorov, the father of modern
probability theory, proved that the sum of the first n odd positive integers is
n2, when he was five years old.

1.4. Some Properties of the Probability Measure

Next, we present some theorems that will illustrate the various intuitive
properties of a probability measure.

Theorem 1.8. If A be any event of the sample space S, then

P (Ac) = 1− P (A)

where Ac denotes the complement of A with respect to S.

Proof: Let A be any subset of S. Then S = A ∪ Ac. Further A and Ac are
mutually disjoint. Thus, using (P3), we get

1 = P (S) = P (A ∪Ac)

= P (A) + P (Ac).
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Hence, we see that
P (Ac) = 1− P (A).

This completes the proof.

Theorem 1.9. If A ⊆ B ⊆ S, then

P (A) ≤ P (B).

Proof: Note that B = A ∪ (B \ A) where B \ A denotes all the elements x

that are in B but not in A. Further, A∩ (B \A) = ∅. Hence by (P3), we get

P (B) = P (A ∪ (B \ A))

= P (A) + P (B \ A).

By axiom (P1), we know that P (B \ A) ≥ 0. Thus, from the above, we get

P (B) ≥ P (A)

and the proof is complete.

Theorem 1.10. If A is any event in S, then

0 ≤ P (A) ≤ 1.
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Proof: Follows from axioms (P1) and (P2) and Theorem 1.8.

Theorem 1.10. If A and B are any two events, then

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof: It is easy to see that

A ∪B = A ∪ (Ac ∩B)

and
A ∩ (Ac ∩B) = ∅.

Hence by (P3), we get

P (A ∪B) = P (A) + P (Ac ∩B) (1.1)

But the set B can also be written as

B = (A ∩B) ∪ (Ac ∩B)
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Therefore, by (P3), we get

P (B) = P (A ∩B) + P (Ac ∩B). (1.2)

Eliminating P (Ac ∩B) from (1.1) and (1.2), we get

P (A ∪B) = P (A) + P (B)− P (A ∩B)

and the proof of the theorem is now complete.

This above theorem tells us how to calculate the probability that at least
one of A and B occurs.

Example 1.19. If P (A) = 0.25 and P (B) = 0.8, then show that 0.05 ≤
P (A ∩B) ≤ 0.25.

Answer: Since A ∩B ⊆ A and A ∩B ⊆ B, by Theorem 1.8, we get

P (A ∩B) ≤ P (A) and also P (A ∩B) ≤ P (B).

Hence
P (A ∩B) ≤ min{P (A), P (B)}.

This shows that
P (A ∩B) ≤ 0.25. (1.3)

Since A ∪B ⊆ S, by Theorem 1.8, we get

P (A ∪B) ≤ P (S)

That is, by Theorem 1.10

P (A) + P (B)− P (A ∩B) ≤ P (S).

Hence, we obtain
0.8 + 0.25− P (A ∩B) ≤ 1

and this yields
0.8 + 0.25− 1 ≤ P (A ∩B).

From this, we get
0.05 ≤ P (A ∩B). (1.4)
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From (1.3) and (1.4), we get

0.05 ≤ P (A ∩B) ≤ 0.25.

Example 1.20. Let A and B be events in a sample space S such that
P (A) = 1

2 = P (B) and P (Ac ∩Bc) = 1
3 . Find P (A ∪Bc).

Answer: Notice that

A ∪Bc = A ∪ (Ac ∩Bc).

Hence,
P (A ∪Bc) = P (A) + P (Ac ∩Bc)

=
1
2

+
1
3

=
5
6
.

Theorem 1.11. If A1 and A2 are two events such that A1 ⊆ A2, then

P (A2 \ A1) = P (A2)− P (A1).

Proof: The event A2 can be written as

A2 = A1

⋃
(A2 \ A1)

where the sets A1 and A2 \ A1 are disjoint. Hence

P (A2) = P (A1) + P (A2 \ A1)

which is
P (A2 \ A1) = P (A2)− P (A1)

and the proof of the theorem is now complete.

From calculus we know that a real function f : IR → IR (the set of real
numbers) is continuous on IR if and only if, for every convergent sequence
{xn}∞n=1 in IR,

lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
.
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Theorem 1.12. If A1, A2, ..., An, ... is a sequence of events in sample space
S such that A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ · · ·, then

P

( ∞⋃

n=1

An

)
= lim

n→∞
P (An).

Similarly, if B1, B2, ..., Bn, ... is a sequence of events in sample space S such
that B1 ⊇ B2 ⊇ · · · ⊇ Bn ⊇ · · ·, then

P

( ∞⋂

n=1

Bn

)
= lim

n→∞
P (Bn).

Proof: Given an increasing sequence of events

A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ · · ·

we define a disjoint collection of events as follows:

E1 = A1

En = An \ An−1 ∀n ≥ 2.

Then {En}∞n=1 is a disjoint collection of events such that

∞⋃

n=1

An =
∞⋃

n=1

En.

Further

P

( ∞⋃

n=1

An

)
= P

( ∞⋃

n=1

En

)

=
∞∑

n=1

P (En)

= lim
m→∞

m∑

n=1

P (En)

= lim
m→∞

[
P (A1) +

m∑

n=2

[P (An)− P (An−1)]

]

= lim
m→∞

P (Am)

= lim
n→∞

P (An).
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The second part of the theorem can be proved similarly.

Note that

lim
n→∞

An =
∞⋃

n=1

An

and

lim
n→∞

Bn =
∞⋂

n=1

Bn.

Hence the results above theorem can be written as

P
(

lim
n→∞

An

)
= lim

n→∞
P (An)

and
P
(

lim
n→∞

Bn

)
= lim

n→∞
P (Bn)

and the Theorem 1.12 is called the continuity theorem for the probability
measure.

1.5. Review Exercises

1. If we randomly pick two television sets in succession from a shipment of
240 television sets of which 15 are defective, what is the probability that they
will both be defective?

2. A poll of 500 people determines that 382 like ice cream and 362 like cake.
How many people like both if each of them likes at least one of the two?
(Hint: Use P (A ∪B) = P (A) + P (B)− P (A ∩B) ).

3. The Mathematics Department of the University of Louisville consists of
8 professors, 6 associate professors, 13 assistant professors. In how many of
all possible samples of size 4, chosen without replacement, will every type of
professor be represented?

4. A pair of dice consisting of a six-sided die and a four-sided die is rolled
and the sum is determined. Let A be the event that a sum of 5 is rolled and
let B be the event that a sum of 5 or a sum of 9 is rolled. Find (a) P (A), (b)
P (B), and (c) P (A ∩B).

5. A faculty leader was meeting two students in Paris, one arriving by
train from Amsterdam and the other arriving from Brussels at approximately
the same time. Let A and B be the events that the trains are on time,
respectively. If P (A) = 0.93, P (B) = 0.89 and P (A ∩ B) = 0.87, then find
the probability that at least one train is on time.



Probability of Events 24

6. Bill, George, and Ross, in order, roll a die. The first one to roll an even
number wins and the game is ended. What is the probability that Bill will
win the game?

7. Let A and B be events such that P (A) = 1
2 = P (B) and P (Ac ∩Bc) = 1

3 .
Find the probability of the event Ac ∪Bc.

8. Suppose a box contains 4 blue, 5 white, 6 red and 7 green balls. In how
many of all possible samples of size 5, chosen without replacement, will every
color be represented?

9. Using the Binomial Theorem, show that
n∑

k=0

k

(
n

k

)
= n 2n−1.

10. A function consists of a domain A, a co-domain B and a rule f . The
rule f assigns to each number in the domain A one and only one letter in the
co-domain B. If A = {1, 2, 3} and B = {x, y, z, w}, then find all the distinct
functions that can be formed from the set A into the set B.

11. Let S be a countable sample space. Let {Oi}∞i=1 be the collection of all
the elementary events in S. What should be the value of the constant c such
that P (Oi) = c

(
1
3

)i will be a probability measure in S?

12. A box contains five green balls, three black balls, and seven red balls.
Two balls are selected at random without replacement from the box. What
is the probability that both balls are the same color?

13. Find the sample space of the random experiment which consists of tossing
a coin until the first head is obtained. Is this sample space discrete?

14. Find the sample space of the random experiment which consists of tossing
a coin infinitely many times. Is this sample space discrete?

15. Five fair dice are thrown. What is the probability that a full house is
thrown (that is, where two dice show one number and other three dice show
a second number)?

16. If a fair coin is tossed repeatedly, what is the probability that the third
head occurs on the nth toss?

17. In a particular softball league each team consists of 5 women and 5
men. In determining a batting order for 10 players, a woman must bat first,
and successive batters must be of opposite sex. How many different batting
orders are possible for a team?
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18. An urn contains 3 red balls, 2 green balls and 1 yellow ball. Three balls
are selected at random and without replacement from the urn. What is the
probability that at least 1 color is not drawn?

19. A box contains four $10 bills, six $5 bills and two $1 bills. Two bills are
taken at random from the box without replacement. What is the probability
that both bills will be of the same denomination?

20. An urn contains n white counters numbered 1 through n, n black coun-
ters numbered 1 through n, and n red counter numbered 1 through n. If
two counters are to be drawn at random without replacement, what is the
probability that both counters will be of the same color or bear the same
number?

21. Two people take turns rolling a fair die. Person X rolls first, then
person Y , then X, and so on. The winner is the first to roll a 6. What is the
probability that person X wins?

22. Mr. Flowers plants 10 rose bushes in a row. Eight of the bushes are
white and two are red, and he plants them in random order. What is the
probability that he will consecutively plant seven or more white bushes?

23. Using mathematical induction, show that

dn

dxn
[f(x) · g(x)] =

n∑

k=0

(
n

k

)
dk

dxk
[f(x)] · dn−k

dxn−k
[g(x)] .
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Chapter 2

CONDITIONAL
PROBABILITIES

AND
BAYES’ THEOREM

2.1. Conditional Probabilities

First, we give a heuristic argument for the definition of conditional prob-
ability, and then based on our heuristic argument, we define the conditional
probability.

Consider a random experiment whose sample space is S. Let B ⊂ S.
In many situations, we are only concerned with those outcomes that are
elements of B. This means that we consider B to be our new sample space.

For the time being, suppose S is a nonempty finite sample space and B is
a nonempty subset of S. Given this new discrete sample space B, how do
we define the probability of an event A? Intuitively, one should define the
probability of A with respect to the new sample space B as (see the figure
above)

P (A given B) =
the number of elements in A ∩ B

the number of elements in B
.
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We denote the conditional probability of A given the new sample space B as
P (A/B). Hence with this notation, we say that

P (A/B) =
N(A ∩B)

N(B)

=
P (A ∩B)

P (B)
,

since N(S) += 0. Here N(S) denotes the number of elements in S.

Thus, if the sample space is finite, then the above definition of the prob-
ability of an event A given that the event B has occurred makes sense in-
tuitively. Now we define the conditional probability for any sample space
(discrete or continuous) as follows.

Definition 2.1. Let S be a sample space associated with a random exper-
iment. The conditional probability of an event A, given that event B has
occurred, is defined by

P (A/B) =
P (A ∩B)

P (B)

provided P (B) > 0.

This conditional probability measure P (A/B) satisfies all three axioms
of a probability measure. That is,

(CP1) P (A/B) ≥ 0 for all event A

(CP2) P (B/B) = 1
(CP3) If A1, A2, ..., Ak, ... are mutually exclusive events, then

P (
∞⋃

k=1

Ak/B) =
∞∑

k=1

P (Ak/B).

Thus, it is a probability measure with respect to the new sample space B.

Example 2.1. A drawer contains 4 black, 6 brown, and 8 olive socks. Two
socks are selected at random from the drawer. (a) What is the probability
that both socks are of the same color? (b) What is the probability that both
socks are olive if it is known that they are of the same color?

Answer: The sample space of this experiment consists of

S = {(x, y) |x, y ∈ Bl, Ol, Br}.

The cardinality of S is

N(S) =
(

18
2

)
= 153.
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Let A be the event that two socks selected at random are of the same color.
Then the cardinality of A is given by

N(A) =
(

4
2

)
+
(

6
2

)
+
(

8
2

)

= 6 + 15 + 28

= 49.

Therefore, the probability of A is given by

P (A) =
49(18
2

) =
49
153

.

Let B be the event that two socks selected at random are olive. Then the
cardinality of B is given by

N(B) =
(

8
2

)

and hence

P (B) =
(8
2

)
(18

2

) =
28
153

.

Notice that B ⊂ A. Hence,

P (B/A) =
P (A ∩B)

P (A)

=
P (B)
P (A)

=
(

28
153

) (
153
49

)

=
28
49

=
4
7
.

Let A and B be two mutually disjoint events in a sample space S. We
want to find a formula for computing the probability that the event A occurs
before the event B in a sequence trials. Let P (A) and P (B) be the probabil-
ities that A and B occur, respectively. Then the probability that neither A

nor B occurs is 1− P (A)− P (B). Let us denote this probability by r, that
is r = 1− P (A)− P (B).

In the first trial, either A occurs, or B occurs, or neither A nor B occurs.
In the first trial if A occurs, then the probability of A occurs before B is 1.



P(A)

P(A)

P(A)

P(A)

A before B

A before B

A before B

A before B

1

1

1

1

0

0

0

0

P(B)

P(B)

P(B)

P(B)r = 1-P(A)-P(B)

r

r

r

r
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If B occurs in the first trial, then the probability of A occurs before B is 0.
If neither A nor B occurs in the first trial, we look at the outcomes of the
second trial. In the second trial if A occurs, then the probability of A occurs
before B is 1. If B occurs in the second trial, then the probability of A occurs
before B is 0. If neither A nor B occurs in the second trial, we look at the
outcomes of the third trial, and so on. This argument can be summarized in
the following diagram.

Hence the probability that the event A comes before the event B is given by

P (A before B) = P (A) + r P (A) + r2 P (A) + r3 P (A) + · · · + rn P (A) + · · ·
= P (A) [1 + r + r2 + · · · + rn + · · · ]

= P (A)
1

1− r

= P (A)
1

1− [1− P (A)− P (B)]

=
P (A)

P (A) + P (B)
.

The event A before B can also be interpreted as a conditional event. In
this interpretation the event A before B means the occurrence of the event
A given that A ∪B has already occurred. Thus we again have

P (A/A ∪B) =
P (A ∩ (A ∪B))

P (A ∪B)

=
P (A)

P (A) + P (B)
.

Example 2.2. A pair of four-sided dice is rolled and the sum is determined.
What is the probability that a sum of 3 is rolled before a sum of 5 is rolled
in a sequence of rolls of the dice?
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Answer: The sample space of this random experiment is

S =

{(1, 1) (1, 2) (1, 3) (1, 4)
(2, 1) (2, 2) (2, 3) (2, 4)
(3, 1) (3, 2) (3, 3) (3, 4)
(4, 1) (4, 2) (4, 3) (4, 4)}.

Let A denote the event of getting a sum of 3 and B denote the event of
getting a sum of 5. The probability that a sum of 3 is rolled before a sum
of 5 is rolled can be thought of as the conditional probability of a sum of 3,
given that a sum of 3 or 5 has occurred. That is, P (A/A ∪B). Hence

P (A/A ∪B) =
P (A ∩ (A ∪B))

P (A ∪B)

=
P (A)

P (A) + P (B)

=
N(A)

N(A) + N(B)

=
2

2 + 4

=
1
3
.

Example 2.3. If we randomly pick two television sets in succession from a
shipment of 240 television sets of which 15 are defective, what is the proba-
bility that they will be both defective?

Answer: Let A denote the event that the first television picked was defective.
Let B denote the event that the second television picked was defective. Then
A∩B will denote the event that both televisions picked were defective. Using
the conditional probability, we can calculate

P (A ∩B) = P (A) P (B/A)

=
(

15
240

) (
14
239

)

=
7

1912
.

In Example 2.3, we assume that we are sampling without replacement.

Definition 2.2. If an object is selected and then replaced before the next
object is selected, this is known as sampling with replacement. Otherwise, it
is called sampling without replacement.
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Rolling a die is equivalent to sampling with replacement, whereas dealing
a deck of cards to players is sampling without replacement.

Example 2.4. A box of fuses contains 20 fuses, of which 5 are defective. If
3 of the fuses are selected at random and removed from the box in succession
without replacement, what is the probability that all three fuses are defective?

Answer: Let A be the event that the first fuse selected is defective. Let B

be the event that the second fuse selected is defective. Let C be the event
that the third fuse selected is defective. The probability that all three fuses
selected are defective is P (A ∩B ∩ C). Hence

P (A ∩B ∩ C) = P (A) P (B/A) P (C/A ∩B)

=
(

5
20

) (
4
19

) (
3
18

)

=
1

114
.

Definition 2.3. Two events A and B of a sample space S are called inde-
pendent if and only if

P (A ∩B) = P (A) P (B).

Example 2.5. The following diagram shows two events A and B in the
sample space S. Are the events A and B independent?

Answer: There are 10 black dots in S and event A contains 4 of these dots.
So the probability of A, is P (A) = 4

10 . Similarly, event B contains 5 black
dots. Hence P (B) = 5

10 . The conditional probability of A given B is

P (A/B) =
P (A ∩B)

P (B)
=

2
5
.



Probability and Mathematical Statistics 33

This shows that P (A/B) = P (A). Hence A and B are independent.

Theorem 2.1. Let A, B ⊆ S. If A and B are independent and P (B) > 0,
then

P (A/B) = P (A).

Proof:

P (A/B) =
P (A ∩B)

P (B)

=
P (A) P (B)

P (B)
= P (A).

Theorem 2.2. If A and B are independent events. Then Ac and B are
independent. Similarly A and Bc are independent.

Proof: We know that A and B are independent, that is

P (A ∩B) = P (A) P (B)

and we want to show that Ac and B are independent, that is

P (Ac ∩B) = P (Ac) P (B).

Since
P (Ac ∩B) = P (Ac/B) P (B)

= [1− P (A/B)] P (B)

= P (B)− P (A/B)P (B)

= P (B)− P (A ∩B)

= P (B)− P (A) P (B)

= P (B) [1− P (A)]

= P (B)P (Ac),

the events Ac and B are independent. Similarly, it can be shown that A and
Bc are independent and the proof is now complete.

Remark 2.1. The concept of independence is fundamental. In fact, it is this
concept that justifies the mathematical development of probability as a sepa-
rate discipline from measure theory. Mark Kac said, “independence of events
is not a purely mathematical concept.” It can, however, be made plausible
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that it should be interpreted by the rule of multiplication of probabilities and
this leads to the mathematical definition of independence.

Example 2.6. Flip a coin and then independently cast a die. What is the
probability of observing heads on the coin and a 2 or 3 on the die?

Answer: Let A denote the event of observing a head on the coin and let B

be the event of observing a 2 or 3 on the die. Then

P (A ∩B) = P (A) P (B)

=
(

1
2

) (
2
6

)

=
1
6
.

Example 2.7. An urn contains 3 red, 2 white and 4 yellow balls. An
ordered sample of size 3 is drawn from the urn. If the balls are drawn with
replacement so that one outcome does not change the probabilities of others,
then what is the probability of drawing a sample that has balls of each color?
Also, find the probability of drawing a sample that has two yellow balls and
a red ball or a red ball and two white balls?

Answer:
P (RWY ) =

(
3
9

) (
2
9

) (
4
9

)
=

8
243

and

P (Y Y R or RWW ) =
(

4
9

) (
4
9

) (
3
9

)
+
(

3
9

) (
2
9

) (
2
9

)
=

20
243

.

If the balls are drawn without replacement, then

P (RWY ) =
(

3
9

) (
2
8

) (
4
7

)
=

1
21

.

P (Y Y R or RWW ) =
(

4
9

) (
3
8

) (
3
7

)
+
(

3
9

) (
2
8

) (
1
7

)
=

7
84

.

There is a tendency to equate the concepts “mutually exclusive” and “inde-
pendence”. This is a fallacy. Two events A and B are mutually exclusive if
A ∩B = ∅ and they are called possible if P (A) += 0 += P (B).

Theorem 2.2. Two possible mutually exclusive events are always dependent
(that is not independent).
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Proof: Suppose not. Then
P (A ∩B) = P (A) P (B)

P (∅) = P (A) P (B)

0 = P (A) P (B).

Hence, we get either P (A) = 0 or P (B) = 0. This is a contradiction to the
fact that A and B are possible events. This completes the proof.

Theorem 2.3. Two possible independent events are not mutually exclusive.

Proof: Let A and B be two independent events and suppose A and B are
mutually exclusive. Then

P (A) P (B) = P (A ∩B)

= P (∅)
= 0.

Therefore, we get either P (A) = 0 or P (B) = 0. This is a contradiction to
the fact that A and B are possible events.

The possible events A and B exclusive implies A and B are not indepen-
dent; and A and B independent implies A and B are not exclusive.

2.2. Bayes’ Theorem

There are many situations where the ultimate outcome of an experiment
depends on what happens in various intermediate stages. This issue is re-
solved by the Bayes’ Theorem.

Definition 2.4. Let S be a set and let P = {Ai}m
i=1 be a collection of subsets

of S. The collection P is called a partition of S if

(a) S =
m⋃

i=1

Ai

(b) Ai ∩Aj = ∅ for i += j.
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Theorem 2.4. If the events {Bi}m
i=1 constitute a partition of the sample

space S and P (Bi) += 0 for i = 1, 2, ..., m, then for any event A in S

P (A) =
m∑

i=1

P (Bi) P (A/Bi).

Proof: Let S be a sample space and A be an event in S. Let {Bi}m
i=1 be

any partition of S. Then

A =
m⋃

i=1

(A ∩Bi) .

Thus

P (A) =
m∑

i=1

P (A ∩Bi)

=
m∑

i=1

P (Bi) P (A/Bi) .

Theorem 2.5. If the events {Bi}m
i=1 constitute a partition of the sample

space S and P (Bi) += 0 for i = 1, 2, ..., m, then for any event A in S such
that P (A) += 0

P (Bk/A) =
P (Bk) P (A/Bk)∑m
i=1 P (Bi) P (A/Bi)

k = 1, 2, ..., m.

Proof: Using the definition of conditional probability, we get

P (Bk/A) =
P (A ∩Bk)

P (A)
.

Using Theorem 1, we get

P (Bk/A) =
P (A ∩Bk)∑m

i=1 P (Bi) P (A/Bi)
.

This completes the proof.
This Theorem is called Bayes Theorem. The probability P (Bk) is called

prior probability. The probability P (Bk/A) is called posterior probability.

Example 2.8. Two boxes containing marbles are placed on a table. The
boxes are labeled B1 and B2. Box B1 contains 7 green marbles and 4 white
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marbles. Box B2 contains 3 green marbles and 10 yellow marbles. The
boxes are arranged so that the probability of selecting box B1 is 1

3 and the
probability of selecting box B2 is 2

3 . Kathy is blindfolded and asked to select
a marble. She will win a color TV if she selects a green marble. (a) What is
the probability that Kathy will win the TV (that is, she will select a green
marble)? (b) If Kathy wins the color TV, what is the probability that the
green marble was selected from the first box?

Answer: Let A be the event of drawing a green marble. The prior proba-
bilities are P (B1) = 1

3 and P (B2) = 2
3 .

(a) The probability that Kathy will win the TV is

P (A) = P (A ∩B1) + P (A ∩B2)

= P (A/B1) P (B1) + P (A/B2) P (B2)

=
(

7
11

) (
1
3

)
+
(

3
13

) (
2
3

)

=
7
33

+
2
13

=
91
429

+
66
429

=
157
429

.

(b) Given that Kathy won the TV, the probability that the green marble was
selected from B1 is
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P (B1/A) =
P (A/B1) P (B1)

P (A/B1) P (B1) + P (A/B2) P (B2)

=
(

7
11

) (
1
3

)
(

7
11

) (
1
3

)
+
(

3
13

) (
2
3

)

=
91
157

.

Note that P (A/B1) is the probability of selecting a green marble from
B1 whereas P (B1/A) is the probability that the green marble was selected
from box B1.

Example 2.9. Suppose box A contains 4 red and 5 blue chips and box B

contains 6 red and 3 blue chips. A chip is chosen at random from the box A

and placed in box B. Finally, a chip is chosen at random from among those
now in box B. What is the probability a blue chip was transferred from box
A to box B given that the chip chosen from box B is red?

Answer: Let E represent the event of moving a blue chip from box A to box
B. We want to find the probability of a blue chip which was moved from box
A to box B given that the chip chosen from B was red. The probability of
choosing a red chip from box A is P (R) = 4

9 and the probability of choosing
a blue chip from box A is P (B) = 5

9 . If a red chip was moved from box A to
box B, then box B has 7 red chips and 3 blue chips. Thus the probability
of choosing a red chip from box B is 7

10 . Similarly, if a blue chip was moved
from box A to box B, then the probability of choosing a red chip from box
B is 6

10 .
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Hence, the probability that a blue chip was transferred from box A to box B

given that the chip chosen from box B is red is given by

P (E/R) =
P (R/E) P (E)

P (R)

=
(

6
10

) (
5
9

)
(

7
10

) (
4
9

)
+
(

6
10

) (
5
9

)

=
15
29

.

Example 2.10. Sixty percent of new drivers have had driver education.
During their first year, new drivers without driver education have probability
0.08 of having an accident, but new drivers with driver education have only a
0.05 probability of an accident. What is the probability a new driver has had
driver education, given that the driver has had no accident the first year?

Answer: Let A represent the new driver who has had driver education and
B represent the new driver who has had an accident in his first year. Let Ac

and Bc be the complement of A and B, respectively. We want to find the
probability that a new driver has had driver education, given that the driver
has had no accidents in the first year, that is P (A/Bc).

P (A/Bc) =
P (A ∩Bc)

P (Bc)

=
P (Bc/A) P (A)

P (Bc/A) P (A) + P (Bc/Ac) P (Ac)

=
[1− P (B/A)] P (A)

[1− P (B/A)] P (A) + [1− P (B/Ac)] [1− P (A)]

=
(

60
100

) (
95
100

)
(

40
100

) (
92
100

)
+
(

60
100

) (
95
100

)

= 0.6077.

Example 2.11. One-half percent of the population has AIDS. There is a
test to detect AIDS. A positive test result is supposed to mean that you
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have AIDS but the test is not perfect. For people with AIDS, the test misses
the diagnosis 2% of the times. And for the people without AIDS, the test
incorrectly tells 3% of them that they have AIDS. (a) What is the probability
that a person picked at random will test positive? (b) What is the probability
that you have AIDS given that your test comes back positive?

Answer: Let A denote the event of one who has AIDS and let B denote the
event that the test comes out positive.

(a) The probability that a person picked at random will test positive is
given by

P (test positive) = (0.005) (0.98) + (0.995) (0.03)

= 0.0049 + 0.0298 = 0.035.

(b) The probability that you have AIDS given that your test comes back
positive is given by

P (A/B) =
favorable positive branches

total positive branches

=
(0.005) (0.98)

(0.005) (0.98) + (0.995) (0.03)

=
0.0049
0.035

= 0.14.

Remark 2.2. This example illustrates why Bayes’ theorem is so important.
What we would really like to know in this situation is a first-stage result: Do
you have AIDS? But we cannot get this information without an autopsy. The
first stage is hidden. But the second stage is not hidden. The best we can
do is make a prediction about the first stage. This illustrates why backward
conditional probabilities are so useful.
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2.3. Review Exercises

1. Let P (A) = 0.4 and P (A ∪ B) = 0.6. For what value of P (B) are A and
B independent?

2. A die is loaded in such a way that the probability of the face with j dots
turning up is proportional to j for j = 1, 2, 3, 4, 5, 6. In 6 independent throws
of this die, what is the probability that each face turns up exactly once?

3. A system engineer is interested in assessing the reliability of a rocket
composed of three stages. At take off, the engine of the first stage of the
rocket must lift the rocket off the ground. If that engine accomplishes its
task, the engine of the second stage must now lift the rocket into orbit. Once
the engines in both stages 1 and 2 have performed successfully, the engine
of the third stage is used to complete the rocket’s mission. The reliability of
the rocket is measured by the probability of the completion of the mission. If
the probabilities of successful performance of the engines of stages 1, 2 and
3 are 0.99, 0.97 and 0.98, respectively, find the reliability of the rocket.

4. Identical twins come from the same egg and hence are of the same sex.
Fraternal twins have a 50-50 chance of being the same sex. Among twins the
probability of a fraternal set is 1

3 and an identical set is 2
3 . If the next set of

twins are of the same sex, what is the probability they are identical?

5. In rolling a pair of fair dice, what is the probability that a sum of 7 is
rolled before a sum of 8 is rolled ?

6. A card is drawn at random from an ordinary deck of 52 cards and re-
placed. This is done a total of 5 independent times. What is the conditional
probability of drawing the ace of spades exactly 4 times, given that this ace
is drawn at least 4 times?

7. Let A and B be independent events with P (A) = P (B) and P (A ∪B) =
0.5. What is the probability of the event A?

8. An urn contains 6 red balls and 3 blue balls. One ball is selected at
random and is replaced by a ball of the other color. A second ball is then
chosen. What is the conditional probability that the first ball selected is red,
given that the second ball was red?
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9. A family has five children. Assuming that the probability of a girl on
each birth was 0.5 and that the five births were independent, what is the
probability the family has at least one girl, given that they have at least one
boy?

10. An urn contains 4 balls numbered 0 through 3. One ball is selected at
random and removed from the urn and not replaced. All balls with nonzero
numbers less than that of the selected ball are also removed from the urn.
Then a second ball is selected at random from those remaining in the urn.
What is the probability that the second ball selected is numbered 3?

11. English and American spelling are rigour and rigor, respectively. A man
staying at Al Rashid hotel writes this word, and a letter taken at random from
his spelling is found to be a vowel. If 40 percent of the English-speaking men
at the hotel are English and 60 percent are American, what is the probability
that the writer is an Englishman?

12. A diagnostic test for a certain disease is said to be 90% accurate in that,
if a person has the disease, the test will detect with probability 0.9. Also, if
a person does not have the disease, the test will report that he or she doesn’t
have it with probability 0.9. Only 1% of the population has the disease in
question. If the diagnostic test reports that a person chosen at random from
the population has the disease, what is the conditional probability that the
person, in fact, has the disease?

13. A small grocery store had 10 cartons of milk, 2 of which were sour. If
you are going to buy the 6th carton of milk sold that day at random, find
the probability of selecting a carton of sour milk.

14. Suppose Q and S are independent events such that the probability that
at least one of them occurs is 1

3 and the probability that Q occurs but S does
not occur is 1

9 . What is the probability of S?

15. A box contains 2 green and 3 white balls. A ball is selected at random
from the box. If the ball is green, a card is drawn from a deck of 52 cards.
If the ball is white, a card is drawn from the deck consisting of just the 16
pictures. (a) What is the probability of drawing a king? (b) What is the
probability of a white ball was selected given that a king was drawn?
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16. Five urns are numbered 3,4,5,6 and 7, respectively. Inside each urn is
n2 dollars where n is the number on the urn. The following experiment is
performed: An urn is selected at random. If its number is a prime number the
experimenter receives the amount in the urn and the experiment is over. If its
number is not a prime number, a second urn is selected from the remaining
four and the experimenter receives the total amount in the two urns selected.
What is the probability that the experimenter ends up with exactly twenty-
five dollars?

17. A cookie jar has 3 red marbles and 1 white marble. A shoebox has 1 red
marble and 1 white marble. Three marbles are chosen at random without
replacement from the cookie jar and placed in the shoebox. Then 2 marbles
are chosen at random and without replacement from the shoebox. What is
the probability that both marbles chosen from the shoebox are red?

18. A urn contains n black balls and n white balls. Three balls are chosen
from the urn at random and without replacement. What is the value of n if
the probability is 1

12 that all three balls are white?

19. An urn contains 10 balls numbered 1 through 10. Five balls are drawn
at random and without replacement. Let A be the event that “Exactly two
odd-numbered balls are drawn and they occur on odd-numbered draws from
the urn.” What is the probability of event A?

20. I have five envelopes numbered 3, 4, 5, 6, 7 all hidden in a box. I
pick an envelope – if it is prime then I get the square of that number in
dollars. Otherwise (without replacement) I pick another envelope and then
get the sum of squares of the two envelopes I picked (in dollars). What is
the probability that I will get $25?



Conditional Probability and Bayes’ Theorem 44



Probability and Mathematical Statistics 45

Chapter 3

RANDOM VARIABLES
AND

DISTRIBUTION FUNCTIONS

3.1. Introduction

In many random experiments, the elements of sample space are not nec-
essarily numbers. For example, in a coin tossing experiment the sample space
consists of

S = {Head, Tail}.

Statistical methods involve primarily numerical data. Hence, one has to
‘mathematize’ the outcomes of the sample space. This mathematization, or
quantification, is achieved through the notion of random variables.

Definition 3.1. Consider a random experiment whose sample space is S. A
random variable X is a function from the sample space S into the set of real
numbers IR such that for each interval I in IR, the set {s ∈ S |X(s) ∈ I} is an
event in S.

In a particular experiment a random variable X would be some function
that assigns a real number X(s) to each possible outcome s in the sample
space. Given a random experiment, there can be many random variables.
This is due to the fact that given two (finite) sets A and B, the number
of distinct functions one can come up with is |B||A|. Here |A| means the
cardinality of the set A.

Random variable is not a variable. Also, it is not random. Thus some-
one named it inappropriately. The following analogy speaks the role of the
random variable. Random variable is like the Holy Roman Empire – it was
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not holy, it was not Roman, and it was not an empire. A random variable is
neither random nor variable, it is simply a function. The values it takes on
are both random and variable.

Definition 3.2. The set {x ∈ IR |x = X(s), s ∈ S} is called the space of the
random variable X.

The space of the random variable X will be denoted by RX . The space
of the random variable X is actually the range of the function X : S → IR.

Example 3.1. Consider the coin tossing experiment. Construct a random
variable X for this experiment. What is the space of this random variable
X?

Answer: The sample space of this experiment is given by

S = {Head, Tail}.

Let us define a function from S into the set of reals as follows

X(Head) = 0

X(Tail) = 1.

Then X is a valid map and thus by our definition of random variable, it is a
random variable for the coin tossing experiment. The space of this random
variable is

RX = {0, 1}.

Example 3.2. Consider an experiment in which a coin is tossed ten times.
What is the sample space of this experiment? How many elements are in this
sample space? Define a random variable for this sample space and then find
the space of the random variable.
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Answer: The sample space of this experiment is given by

S = {s | s is a sequence of 10 heads or tails}.

The cardinality of S is
|S| = 210.

Let X : S → IR be a function from the sample space S into the set of reals IR
defined as follows:

X(s) = number of heads in sequence s.

Then X is a random variable. This random variable, for example, maps the
sequence HHTTTHTTHH to the real number 5, that is

X(HHTTTHTTHH) = 5.

The space of this random variable is

RX = {0, 1, 2, ..., 10}.

Now, we introduce some notations. By (X = x) we mean the event {s ∈
S |X(s) = x}. Similarly, (a < X < b) means the event {s ∈ S | a < X < b}
of the sample space S. These are illustrated in the following diagrams.

Definition 3.3. If the space of random variable X is countable, then X is
called a discrete random variable.

Definition 3.4. If the space of random variable X is uncountable, then X

is called a continuous random variable.

In the case of a continuous random variable, the space is either an inter-
val or a union of intervals. A random variable is characterized through its
probability density function. First, we consider the discrete case and then
we examine the continuous case.
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3.2. Distribution Functions of Discrete Random Variables

Definition 3.5. Let RX be the space of the random variable X. The
function f : RX → IR defined by

f(x) = P (X = x)

is called the probability density function (pdf) of X.

Example 3.3. In an introductory statistics class of 50 students, there are 11
freshman, 19 sophomores, 14 juniors and 6 seniors. One student is selected at
random. What is the sample space of this experiment? Construct a random
variable X for this sample space and then find its space. Further, find the
probability density function of this random variable X.

Answer: The sample space of this random experiment is

S = {Fr, So, Jr, Sr}.

Define a function X : S → IR as follows:

X(Fr) = 1, X(So) = 2

X(Jr) = 3, X(Sr) = 4.

Then clearly X is a random variable in S. The space of X is given by

RX = {1, 2, 3, 4}.

The probability density function of X is given by

f(1) = P (X = 1) =
11
50

f(2) = P (X = 2) =
19
50

f(3) = P (X = 3) =
14
50

f(4) = P (X = 4) =
6
50

.

Example 3.4. A box contains 5 colored balls, 2 black and 3 white. Balls
are drawn successively without replacement. If the random variable X is the
number of draws until the last black ball is obtained, find the probability
density function for the random variable X.
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Answer: Let ‘B’ denote the black ball, and ‘W’ denote the white ball. Then
the sample space S of this experiment is given by (see the figure below)

S = {BB, BWB, WBB, BWWB, WBWB, WWBB,

BWWWB, WWBWB, WWWBB, WBWWB}.

Hence the sample space has 10 points, that is |S| = 10. It is easy to see that
the space of the random variable X is {2, 3, 4, 5}.

Therefore, the probability density function of X is given by

f(2) = P (X = 2) =
1
10

, f(3) = P (X = 3) =
2
10

f(4) = P (X = 4) =
3
10

, f(5) = P (X = 5) =
4
10

.

Thus
f(x) =

x− 1
10

, x = 2, 3, 4, 5.



Sample Space S Real line

0

1

2

3

TTT
TTH
THT
HTT
THH
HTH
HHT
HHH

X
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Example 3.5. A pair of dice consisting of a six-sided die and a four-sided
die is rolled and the sum is determined. Let the random variable X denote
this sum. Find the sample space, the space of the random variable, and
probability density function of X.

Answer: The sample space of this random experiment is given by

S =

{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)}

The space of the random variable X is given by

RX = {2, 3, 4, 5, 6, 7, 8, 9, 10}.

Therefore, the probability density function of X is given by

f(2) = P (X = 2) =
1
24

, f(3) = P (X = 3) =
2
24

f(4) = P (X = 4) =
3
24

, f(5) = P (X = 5) =
4
24

f(6) = P (X = 6) =
4
24

, f(7) = P (X = 7) =
4
24

f(8) = P (X = 8) =
3
24

, f(9) = P (X = 9) =
2
24

f(10) = P (X = 10) =
1
24

.

Example 3.6. A fair coin is tossed 3 times. Let the random variable X

denote the number of heads in 3 tosses of the coin. Find the sample space,
the space of the random variable, and the probability density function of X.

Answer: The sample space S of this experiment consists of all binary se-
quences of length 3, that is

S = {TTT, TTH, THT, HTT, THH, HTH, HHT, HHH}.
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The space of this random variable is given by

RX = {0, 1, 2, 3}.

Therefore, the probability density function of X is given by

f(0) = P (X = 0) =
1
8

f(1) = P (X = 1) =
3
8

f(2) = P (X = 2) =
3
8

f(3) = P (X = 3) =
1
8
.

This can be written as follows:

f(x) =
(

3
x

) (
1
2

)x (1
2

)3−x

x = 0, 1, 2, 3.

The probability density function f(x) of a random variable X completely
characterizes it. Some basic properties of a discrete probability density func-
tion are summarized below.

Theorem 3.1. If X is a discrete random variable with space RX and prob-
ability density function f(x), then

(a) f(x) ≥ 0 for all x in RX , and

(b)
∑

x∈RX

f(x) = 1.

Example 3.7. If the probability of a random variable X with space RX =
{1, 2, 3, ..., 12} is given by

f(x) = k (2x− 1),

then, what is the value of the constant k?
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Answer:
1 =
∑

x∈RX

f(x)

=
∑

x∈RX

k (2x− 1)

=
12∑

x=1

k (2x− 1)

= k

[
2

12∑

x=1

x− 12

]

= k

[
2
(12)(13)

2
− 12
]

= k 144.

Hence

k =
1

144
.

Definition 3.6. The cumulative distribution function F (x) of a random
variable X is defined as

F (x) = P (X ≤ x)

for all real numbers x.

Theorem 3.2. If X is a random variable with the space RX , then

F (x) =
∑

t≤x

f(t)

for x ∈ RX .

Example 3.8. If the probability density function of the random variable X

is given by
1

144
(2x− 1) for x = 1, 2, 3, ..., 12

then find the cumulative distribution function of X.

Answer: The space of the random variable X is given by

RX = {1, 2, 3, ..., 12}.
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Then

F (1) =
∑

t≤1

f(t) = f(1) =
1

144

F (2) =
∑

t≤2

f(t) = f(1) + f(2) =
1

144
+

3
144

=
4

144

F (3) =
∑

t≤3

f(t) = f(1) + f(2) + f(3) =
1

144
+

3
144

+
5

144
=

9
144

.. ........

.. ........

F (12) =
∑

t≤12

f(t) = f(1) + f(2) + · · · + f(12) = 1.

F (x) represents the accumulation of f(t) up to t ≤ x.

Theorem 3.3. Let X be a random variable with cumulative distribution
function F (x). Then the cumulative distribution function satisfies the fol-
lowings:

(a) F (−∞) = 0,
(b) F (∞) = 1, and
(c) F (x) is an increasing function, that is if x < y, then F (x) ≤ F (y) for

all reals x, y.

The proof of this theorem is trivial and we leave it to the students.

Theorem 3.4. If the space RX of the random variable X is given by RX =
{x1 < x2 < x3 < · · · < xn}, then

f(x1) = F (x1)

f(x2) = F (x2)− F (x1)

f(x3) = F (x3)− F (x2)

.. ........

.. ........

f(xn) = F (xn)− F (xn−1).



x1 x2       x3        x4

f(x1)

f(x2)

f(x3)

f(x4)

0
x

F(x1)

F(x2)

F(x3)

F(x4) 1
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Theorem 3.2 tells us how to find cumulative distribution function from the
probability density function, whereas Theorem 3.4 tells us how to find the
probability density function given the cumulative distribution function.

Example 3.9. Find the probability density function of the random variable
X whose cumulative distribution function is

F (x) =






0.00 if x < −1

0.25 if −1 ≤ x < 1

0.50 if 1 ≤ x < 3

0.75 if 3 ≤ x < 5

1.00 if x ≥ 5 .

Also, find (a) P (X ≤ 3), (b) P (X = 3), and (c) P (X < 3).

Answer: The space of this random variable is given by

RX = {−1, 1, 3, 5}.

By the previous theorem, the probability density function of X is given by

f(−1) = 0.25

f(1) = 0.50− 0.25 = 0.25

f(3) = 0.75− 0.50 = 0.25

f(5) = 1.00− 0.75 = 0.25.

The probability P (X ≤ 3) can be computed by using the definition of F .
Hence

P (X ≤ 3) = F (3) = 0.75.
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The probability P (X = 3) can be computed from

P (X = 3) = F (5)− F (3) = 1− 0.75 = 0.25.

Finally, we get P (X < 3) from

P (X < 3) = P (X ≤ 1) = F (1) = 0.5.

We close this section with an example showing that there is no one-to-
one correspondence between a random variable and its distribution function.
Consider a coin tossing experiment with the sample space consisting of a
head and a tail, that is S = {head, tail }. Define two random variables X1

and X2 from S as follows:

X1( head ) = 0 and X1( tail ) = 1

and
X2( head ) = 1 and X2( tail ) = 0.

It is easy to see that both these random variables have the same distribution
function, namely

FXi(x) =

{ 0 if x < 0
1
2 if 0 ≤ x < 1
1 if 1 ≤ x

for i = 1, 2. Hence there is no one-to-one correspondence between a random
variable and its distribution function.

3.3. Distribution Functions of Continuous Random Variables

Recall that a random variable X is said to be continuous if its space is
either an interval or a union of intervals.

Definition 3.7. Let X be a continuous random variable whose space is the
set of real numbers IR. A nonnegative real valued function f : IR → IR is said
to be the probability density function for the continuous random variable X

if it satisfies:
(a)
∫∞
−∞ f(x) dx = 1, and

(b) if A is an event, then P (A) =
∫

A f(x) dx.

Example 3.10. Is the real valued function f : IR → IR defined by

f(x) =
{

2 x−2 if 1 < x < 2
0 otherwise,
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a probability density function for some random variable X?

Answer: We have to show that f is nonnegative and the area under f(x)
is unity. Since the domain of f is the interval (0, 1), it is clear that f is
nonnegative. Next, we calculate

∫ ∞

−∞
f(x) dx =

∫ 2

1
2 x−2 dx

= −2
[

1
x

]2

1

= −2
[
1
2
− 1
]

= 1.

Thus f is a probability density function.

Example 3.11. Is the real valued function f : IR → IR defined by

f(x) =
{

1 + |x| if −1 < x < 1
0 otherwise,

a probability density function for some random variable X?
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Answer: It is easy to see that f is nonnegative, that is f(x) ≥ 0, since
f(x) = 1 + |x|. Next we show that the area under f is not unity. For this we
compute ∫ 1

−1
f(x) dx =

∫ 1

−1
(1 + |x|) dx

=
∫ 0

−1
(1− x) dx +

∫ 1

0
(1 + x) dx

=
[
x− 1

2
x2

]0

−1

+
[
x +

1
2
x2

]1

0

= 1 +
1
2

+ 1 +
1
2

= 3.

Thus f is not a probability density function for some random variable X.

Example 3.12. For what value of the constant c, the real valued function
f : IR → IR given by

f(x) =
c

1 + (x− θ)2 , −∞ < x <∞,

where θ is a real parameter, is a probability density function for random
variable X?

Answer: Since f is nonnegative, we see that c ≥ 0. To find the value of c,
we use the fact that for pdf the area is unity, that is

1 =
∫ ∞

−∞
f(x) dx

=
∫ ∞

−∞

c

1 + (x− θ)2 dx

=
∫ ∞

−∞

c

1 + z2
dz

= c
[
tan−1 z

]∞
−∞

= c
[
tan−1(∞)− tan−1(−∞)

]

= c

[
1
2
π +

1
2
π

]

= c π.

Hence c = 1
π and the density function becomes

f(x) =
1

π [1 + (x− θ)2] , −∞ < x <∞.
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This density function is called the Cauchy distribution function with param-
eter θ. If a random variable X has this pdf then it is called a Cauchy random
variable and is denoted by X ∼ CAU(θ).

This distribution is symmetrical about θ. Further, it achieves it maxi-
mum at x = θ. The following figure illustrates the symmetry of the distribu-
tion for θ = 2.

Example 3.13. For what value of the constant c, the real valued function
f : IR → IR given by

f(x) =

{ c if a ≤ x ≤ b

0 otherwise,
where a, b are real constants, is a probability density function for random
variable X?

Answer: Since f is a pdf, k is nonnegative. Further, since the area under f

is unity, we get

1 =
∫ ∞

−∞
f(x) dx

=
∫ b

a
c dx

= c [x]ba
= c [b− a].

Hence c = 1
b−a , and the pdf becomes

f(x) =

{ 1
b−a if a ≤ x ≤ b

0 otherwise.

This probability density function is called the uniform distribution on
the interval [a, b]. If a random variable X has this pdf then it is called a
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uniform random variable and is denoted by X ∼ UNIF (a, b). The following
is a graph of the probability density function of a random variable on the
interval [2, 5].

Definition 3.8. Let f(x) be the probability density function of a continu-
ous random variable X. The cumulative distribution function F (x) of X is
defined as

F (x) = P (X ≤ x) =
∫ x

−∞
f(t) dt.

The cumulative distribution function F (x) represents the area under the
probability density function f(x) on the interval (−∞, x) (see figure below).

Like the discrete case, the cdf is an increasing function of x, and it takes
value 0 at negative infinity and 1 at positive infinity.

Theorem 3.5. If F (x) is the cumulative distribution function of a contin-
uous random variable X, the probability density function f(x) of X is the
derivative of F (x), that is

d

dx
F (x) = f(x).
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Proof: By Fundamental Theorem of Calculus, we get
d

dx
(F (x)) =

d

dx

(∫ x

−∞
f(t) dt

)

= f(x)
dx

dx
= f(x).

This theorem tells us that if the random variable is continuous, then we can
find the pdf given cdf by taking the derivative of the cdf. Recall that for
discrete random variable, the pdf at a point in space of the random variable
can be obtained from the cdf by taking the difference between the cdf at the
point and the cdf immediately below the point.

Example 3.14. What is the cumulative distribution function of the Cauchy
random variable with parameter θ?

Answer: The cdf of X is given by

F (x) =
∫ x

−∞
f(t) dt

=
∫ x

−∞

1
π [1 + (t− θ)2] dt

=
∫ x−θ

−∞

1
π [1 + z2]

dz

=
1
π

tan−1 (x− θ) +
1
2
.

Example 3.15. What is the probability density function of the random
variable whose cdf is

F (x) =
1

1 + e−x
, −∞ < x <∞?

Answer: The pdf of the random variable is given by

f(x) =
d

dx
F (x)

=
d

dx

(
1

1 + e−x

)

=
d

dx

(
1 + e−x

)−1

= (−1) (1 + e−x)−2 d

dx

(
1 + e−x

)

=
e−x

(1 + e−x)2
.
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Next, we briefly discuss the problem of finding probability when the cdf
is given. We summarize our results in the following theorem.

Theorem 3.6. Let X be a continuous random variable whose cdf is F (x).
Then followings are true:

(a) P (X < x) = F (x),
(b) P (X > x) = 1− F (x),
(c) P (X = x) = 0 , and
(d) P (a < X < b) = F (b)− F (a).

3.4. Percentiles for Continuous Random Variables

In this section, we discuss various percentiles of a continuous random
variable. If the random variable is discrete, then to discuss percentile, we
have to know the order statistics of samples. We shall treat the percentile of
discrete random variable in Chapter 13.

Definition 3.9. Let p be a real number between 0 and 1. A 100pth percentile
of the distribution of a random variable X is any real number q satisfying

P (X ≤ q) ≤ p and P (X > q) ≤ 1− p.

A 100pth percentile is a measure of location for the probability distribu-
tion in the sense that q divides the distribution of the probability mass into
two parts, one having probability mass p and other having probability mass
1− p (see diagram below).

Example 3.16. If the random variable X has the density function

f(x) =






ex−2 for x < 2

0 otherwise,
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then what is the 75th percentile of X?

Answer: Since 100pth = 75, we get p = 0.75. By definition of percentile, we
have

0.75 = p =
∫ q

−∞
f(x) dx

=
∫ q

−∞
ex−2 dx

=
[
ex−2
]q
−∞

= eq−2.

From this solving for q, we get the 75th percentile to be

q = 2 + ln
(

3
4

)
.

Example 3.17. What is the 87.5 percentile for the distribution with density
function

f(x) =
1
2
e−|x| −∞ < x <∞?

Answer: Note that this density function is symmetric about the y-axis, that
is f(x) = f(−x).

Hence
∫ 0

−∞
f(x) dx =

1
2
.
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Now we compute the 87.5th percentile q of the above distribution.

87.5
100

=
∫ q

−∞
f(x) dx

=
∫ 0

−∞

1
2

e−|x| dx +
∫ q

0

1
2

e−|x| dx

=
∫ 0

−∞

1
2

ex dx +
∫ q

0

1
2

e−x dx

=
1
2

+
∫ q

0

1
2

e−x dx

=
1
2

+
1
2
− 1

2
e−q.

Therefore solving for q, we get

0.125 =
1
2

e−q

q = − ln
(

25
100

)
= ln 4.

Hence the 87.5th percentile of the distribution is ln 4.

Example 3.18. Let the continuous random variable X have the density
function f(x) as shown in the figure below:

What is the 25th percentile of the distribution of X?

Answer: Since the line passes through the points (0, 0) and (a, 1
4 ), the func-

tion f(x) is equal to

f(x) =
1
4a

x.
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Since f(x) is a density function the area under f(x) should be unity. Hence

1 =
∫ a

0
f(x) dx

=
∫ a

0

1
4a

x dx

=
1
8a

a2

=
a

8
.

Thus a = 8. Hence the probability density function of X is

f(x) =
1
32

x.

Now we want to find the 25th percentile.

25
100

=
∫ q

0
f(x) dx

=
∫ q

0

1
32

x dx

=
1
64

q2.

Hence q =
√

16, that is the 25th percentile of the above distribution is 4.

Definition 3.10. The 25th and 75th percentiles of any distribution are
called the first and the third quartiles, respectively.

Definition 3.11. The 50th percentile of any distribution is called the median
of the distribution.

The median divides the distribution of the probability mass into two
equal parts (see the following figure).



y
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If a probability density function f(x) is symmetric about the y-axis, then the
median is always 0.

Example 3.19. A random variable is called standard normal if its proba-
bility density function is of the form

f(x) =
1√
2π

e−
1
2 x2

, −∞ < x <∞.

What is the median of X?

Answer: Notice that f(x) = f(−x), hence the probability density function
is symmetric about the y-axis. Thus the median of X is 0.

Definition 3.12. A mode of the distribution of a continuous random variable
X is the value of x where the probability density function f(x) attains a
relative maximum (see diagram).

A mode of a random variable X is one of its most probable values. A
random variable can have more than one mode.

Example 3.20. Let X be a uniform random variable on the interval [0, 1],
that is X ∼ UNIF (0, 1). How many modes does X have?

Answer: Since X ∼ UNIF (0, 1), the probability density function of X is

f(x) =

{ 1 if 0 ≤ x ≤ 1

0 otherwise.

Hence the derivative of f(x) is

f ′(x) = 0 x ∈ (0, 1).

Therefore X has infinitely many modes.
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Example 3.21. Let X be a Cauchy random variable with parameter θ = 0,
that is X ∼ CAU(0). What is the mode of X?

Answer: Since X ∼ CAU(0), the probability density function of f(x) is

f(x) =
1

π (1 + x2)
−∞ < x <∞.

Hence
f ′(x) =

−2x

π (1 + x2)2
.

Setting this derivative to 0, we get x = 0. Thus the mode of X is 0.

Example 3.22. Let X be a continuous random variable with density func-
tion

f(x) =






x2 e−bx for x ≥ 0

0 otherwise,
where b > 0. What is the mode of X?

Answer:
0 =

df

dx
= 2xe−bx − x2be−bx

= (2− bx)x = 0.

Hence
x = 0 or x =

2
b
.

Thus the mode of X is 2
b . The graph of the f(x) for b = 4 is shown below.

Example 3.23. A continuous random variable has density function

f(x) =






3x2

θ3 for 0 ≤ x ≤ θ

0 otherwise,
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for some θ > 0. What is the ratio of the mode to the median for this
distribution?

Answer: For fixed θ > 0, the density function f(x) is an increasing function.
Thus, f(x) has maximum at the right end point of the interval [0, θ]. Hence
the mode of this distribution is θ.

Next we compute the median of this distribution.

1
2

=
∫ q

0
f(x) dx

=
∫ q

0

3x2

θ3
dx

=
[
x3

θ3

]q

0

=
[
q3

θ3

]
.

Hence

q = 2−
1
3 θ.

Thus the ratio of the mode of this distribution to the median is

mode
median

=
θ

2− 1
3 θ

= 3
√

2.

Example 3.24. A continuous random variable has density function

f(x) =






3x2

θ3 for 0 ≤ x ≤ θ

0 otherwise,

for some θ > 0. What is the probability of X less than the ratio of the mode
to the median of this distribution?

Answer: In the previous example, we have shown that the ratio of the mode
to the median of this distribution is given by

a :=
mode

median
= 3
√

2.



Random Variables and Distribution Functions 68

Hence the probability of X less than the ratio of the mode to the median of
this distribution is

P (X < a) =
∫ a

0
f(x) dx

=
∫ a

0

3x2

θ3
dx

=
[
x3

θ3

]a

0

=
a3

θ3

=
(

3
√

2
)3

θ3

=
2
θ3

.

3.5. Review Exercises

1. Let the random variable X have the density function

f(x) =





k x for 0 ≤ x ≤

√
2
k

0 elsewhere.

If the mode of this distribution is at x =
√

2
4 , then what is the median of X?

2. The random variable X has density function

f(x) =






c xk+1 (1− x)k for 0 < x < 1

0 otherwise,

where c > 0 and 1 < k < 2. What is the mode of X?

3. The random variable X has density function

f(x) =






(k + 1) x2 for 0 < x < 1

0 otherwise,

where k is a constant. What is the median of X?

4. What are the median, and mode, respectively, for the density function

f(x) =
1

π (1 + x2)
, −∞ < x <∞?
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5. What is the 10th percentile of the random variable X whose probability
density function is

f(x) =

{ 1
θ e−

x
θ if x ≥ 0, θ > 0

0 elsewhere?

6. What is the median of the random variable X whose probability density
function is

f(x) =

{ 1
2 e−

x
2 if x ≥ 0

0 elsewhere?

7. A continuous random variable X has the density

f(x) =






3 x2

8 for 0 ≤ x ≤ 2

0 otherwise.

What is the probability that X is greater than its 75th percentile?

8. What is the probability density function of the random variable X if its
cumulative distribution function is given by

F (x) =






0.0 if x < 2
0.5 if 2 ≤ x < 3
0.7 if 3 ≤ x < π
1.0 if x ≥ π?

9. Let the distribution of X for x > 0 be

F (x) = 1−
3∑

k=0

xk e−x

k!
.

What is the density function of X for x > 0?

10. Let X be a random variable with cumulative distribution function

F (x) =






1− e−x for x > 0

0 for x ≤ 0.

What is the P
(
0 ≤ eX ≤ 4

)
?
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11. Let X be a continuous random variable with density function

f(x) =






a x2 e−10 x for x ≥ 0

0 otherwise,

where a > 0. What is the probability of X greater than or equal to the mode
of X?
12. Let the random variable X have the density function

f(x) =





k x for 0 ≤ x ≤

√
2
k

0 elsewhere.

If the mode of this distribution is at x =
√

2
4 , then what is the probability of

X less than the median of X?

13. The random variable X has density function

f(x) =






(k + 1) x2 for 0 < x < 1

0 otherwise,

where k is a constant. What is the probability of X between the first and
third quartiles?

14. Let X be a random variable having continuous cumulative distribu-
tion function F (x). What is the cumulative distribution function Y =
max(0,−X)?

15. Let X be a random variable with probability density function

f(x) =
2
3x

for x = 1, 2, 3, ....

What is the probability that X is even?

16. An urn contains 5 balls numbered 1 through 5. Two balls are selected
at random without replacement from the urn. If the random variable X

denotes the sum of the numbers on the 2 balls, then what are the space and
the probability density function of X?

17. A pair of six-sided dice is rolled and the sum is determined. If the
random variable X denotes the sum of the numbers rolled, then what are the
space and the probability density function of X?
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18. Five digit codes are selected at random from the set {0, 1, 2, ..., 9} with
replacement. If the random variable X denotes the number of zeros in ran-
domly chosen codes, then what are the space and the probability density
function of X?

19. A urn contains 10 coins of which 4 are counterfeit. Coins are removed
from the urn, one at a time, until all counterfeit coins are found. If the
random variable X denotes the number of coins removed to find the first
counterfeit one, then what are the space and the probability density function
of X?

20. Let X be a random variable with probability density function

f(x) =
2c

3x
for x = 1, 2, 3, 4, ...,∞

for some constant c. What is the value of c? What is the probability that X

is even?

21. If the random variable X possesses the density function

f(x) =
{

cx if 0 ≤ x ≤ 2
0 otherwise,

then what is the value of c for which f(x) is a probability density function?
What is the cumulative distribution function of X. Graph the functions f(x)
and F (x). Use F (x) to compute P (1 ≤ X ≤ 2).

22. The length of time required by students to complete a 1-hour exam is a
random variable with a pdf given by

f(x) =
{

cx2 + x if 0 ≤ x ≤ 1
0 otherwise,

then what the probability a student finishes in less than a half hour?

23. What is the probability of, when blindfolded, hitting a circle inscribed
on a square wall?

24. Let f(x) be a continuous probability density function. Show that, for
every −∞ < µ < ∞ and σ > 0, the function 1

σf
(x−µ

σ

)
is also a probability

density function.

25. Let X be a random variable with probability density function f(x) and
cumulative distribution function F (x). True or False?

(a) f(x) can’t be larger than 1. (b) F (x) can’t be larger than 1. (c) f(x)
can’t decrease. (d) F (x) can’t decrease. (e) f(x) can’t be negative. (f) F (x)
can’t be negative. (g) Area under f must be 1. (h) Area under F must be
1. (i) f can’t jump. (j) F can’t jump.
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Chapter 4

MOMENTS OF RANDOM
VARIABLES

AND
CHEBYCHEV INEQUALITY

4.1. Moments of Random Variables

In this chapter, we introduce the concepts of various moments of a ran-
dom variable. Further, we examine the expected value and the variance of
random variables in detail. We shall conclude this chapter with a discussion
of Chebychev’s inequality.

Definition 4.1. The nth moment about the origin of a random variable X,
as denoted by E(Xn), is defined to be

E (Xn) =






∑

x∈RX

xn f(x) if X is discrete

∫∞
−∞ xn f(x) dx if X is continuous

for n = 0, 1, 2, 3, ...., provided the right side converges absolutely.

If n = 1, then E(X) is called the first moment about the origin. If
n = 2, then E(X2) is called the second moment of X about the origin. In
general, these moments may or may not exist for a given random variable.
If for a random variable, a particular moment does not exist, then we say
that the random variable does not have that moment. For these moments to
exist one requires absolute convergence of the sum or the integral. Next, we
shall define two important characteristics of a random variable, namely the
expected value and variance. Occasionally E (Xn) will be written as E [Xn].



E(X) = (2+7)/2
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4.2. Expected Value of Random Variables

A random variable X is characterized by its probability density function,
which defines the relative likelihood of assuming one value over the others.
In Chapter 3, we have seen that given a probability density function f of
a random variable X, one can construct the distribution function F of it
through summation or integration. Conversely, the density function f(x)
can be obtained as the marginal value or derivative of F (x). The density
function can be used to infer a number of characteristics of the underlying
random variable. The two most important attributes are measures of location
and dispersion. In this section, we treat the measure of location and treat
the other measure in the next section.

Definition 4.2. Let X be a random variable with space RX and probability
density function f(x). The mean µX of the random variable X is defined as

µX =






∑

x∈RX

x f(x) if X is discrete

∫∞
−∞ x f(x) dx if X is continuous

if the right hand side exists.

The mean of a random variable is a composite of its values weighted by the
corresponding probabilities. The mean is a measure of central tendency: the
value that the random variable takes “on average.” The mean is also called
the expected value of the random variable X and is denoted by E(X). The
symbol E is called the expectation operator. The expected value of a random
variable may or may not exist.

Example 4.1. If X is a uniform random variable on the interval (2, 7), then
what is the mean of X?
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Answer: The density function of X is

f(x) =

{ 1
5 if 2 < x < 7

0 otherwise.

Thus the mean or the expected value of X is

µX = E(X)

=
∫ ∞

−∞
x f(x) dx

=
∫ 7

2
x

1
5

dx

=
[

1
10

x2

]7

2

=
1
10

(49− 4)

=
45
10

=
9
2

=
2 + 7

2
.

In general, if X ∼ UNIF (a, b), then E(X) = 1
2 (a + b).

Example 4.2. If X is a Cauchy random variable with parameter θ, that is
X ∼ CAU(θ), then what is the expected value of X?

Answer: We want to find the expected value of X if it exists. The expected
value of X will exist if the integral

∫
IR xf(x)dx converges absolutely, that is

∫

IR
|x f(x)| dx <∞.

If this integral diverges, then the expected value of X does not exist. Hence,
let us find out if

∫
IR |x f(x)| dx converges or not.
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∫

IR
|x f(x)| dx

=
∫ ∞

−∞
|x f(x)| dx

=
∫ ∞

−∞

∣∣∣∣x
1

π[1 + (x− θ)2]

∣∣∣∣ dx

=
∫ ∞

−∞

∣∣∣∣(z + θ)
1

π[1 + z2]

∣∣∣∣ dz

= θ + 2
∫ ∞

0
z

1
π[1 + z2]

dz

= θ +
[

1
π

ln(1 + z2)
]∞

0

= θ +
1
π

lim
b→∞

ln(1 + b2)

= θ +∞
= ∞.

Since, the above integral does not exist, the expected value for the Cauchy
distribution also does not exist.

Remark 4.1. Indeed, it can be shown that a random variable X with the
Cauchy distribution, E (Xn), does not exist for any natural number n. Thus,
Cauchy random variables have no moments at all.

Example 4.3. If the probability density function of the random variable X

is

f(x) =






(1− p)x−1 p if x = 1, 2, 3, 4, ...,∞

0 otherwise,

then what is the expected value of X?
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Answer: The expected value of X is

E(X) =
∑

x∈RX

x f(x)

=
∞∑

x=1

x (1− p)x−1 p

= p
d

dp

{∫ [ ∞∑

x=1

x (1− p)x−1

]
dp

}

= p
d

dp

{[ ∞∑

x=1

∫
x (1− p)x−1

]
dp

}

= −p
d

dp

{ ∞∑

x=1

(1− p)x

}

= −p
d

dp

{
(1− p)

1
1− (1− p)

}

= −p
d

dp

{
1
p

}

= p

(
1
p

)2

=
1
p

.

Hence the expected value of X is the reciprocal of the parameter p.

Definition 4.3. If a random variable X whose probability density function
is given by

f(x) =

{
(1− p)x−1 p if x = 1, 2, 3, 4, ...,∞

0 otherwise

is called a geometric random variable and is denoted by X ∼ GEO(p).

Example 4.4. A couple decides to have 3 children. If none of the 3 is a
girl, they will try again; and if they still don’t get a girl, they will try once
more. If the random variable X denotes the number of children the couple
will have following this scheme, then what is the expected value of X?

Answer: Since the couple can have 3 or 4 or 5 children, the space of the
random variable X is

RX = {3, 4, 5}.
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The probability density function of X is given by

f(3) = P (X = 3)

= P (at least one girl)

= 1− P (no girls)

= 1− P (3 boys in 3 tries)

= 1− (P (1 boy in each try))3

= 1−
(

1
2

)3

=
7
8
.

f(4) = P (X = 4)

= P (3 boys and 1 girl in last try)

= (P (1 boy in each try))3 P (1 girl in last try)

=
(

1
2

)3 (1
2

)

=
1
16

.

f(5) = P (X = 5)

= P (4 boys and 1 girl in last try) + P (5 boys in 5 tries)

= P (1 boy in each try)4 P (1 girl in last try) + P (1 boy in each try)5

=
(

1
2

)4 (1
2

)
+
(

1
2

)5

=
1
16

.

Hence, the expected value of the random variable is

E(X) =
∑

x∈RX

x f(x)

=
5∑

x=3

x f(x)

= 3 f(3) + 4 f(4) + 5 f(5)

= 3
14
16

+ 4
1
16

+ 5
1
16

=
42 + 4 + 5

16

=
51
16

= 3
3
16

.



Probability and Mathematical Statistics 79

Remark 4.2. We interpret this physically as meaning that if many couples
have children according to this scheme, it is likely that the average family
size would be near 3 3

16 children.

Example 4.5. A lot of 8 TV sets includes 3 that are defective. If 4 of the
sets are chosen at random for shipment to a hotel, how many defective sets
can they expect?

Answer: Let X be the random variable representing the number of defective
TV sets in a shipment of 4. Then the space of the random variable X is

RX = {0, 1, 2, 3}.

Then the probability density function of X is given by

f(x) = P (X = x)

= P (x defective TV sets in a shipment of four)

=

(3
x

) ( 5
4−x

)
(8
4

) x = 0, 1, 2, 3.

Hence, we have

f(0) =
(3
0

) (5
4

)
(8
4

) =
5
70

f(1) =
(3
1

) (5
3

)
(8
4

) =
30
70

f(2) =
(3
2

) (5
2

)
(8
4

) =
30
70

f(3) =
(3
3

) (5
1

)
(8
4

) =
5
70

.

Therefore, the expected value of X is given by

E(X) =
∑

x∈RX

x f(x)

=
3∑

0

x f(x)

= f(1) + 2 f(2) + 3 f(3)

=
30
70

+ 2
30
70

+ 3
5
70

=
30 + 60 + 15

70

=
105
70

= 1.5.



Moments of Random Variables and Chebychev Inequality 80

Remark 4.3. Since they cannot possibly get 1.5 defective TV sets, it should
be noted that the term “expect” is not used in its colloquial sense. Indeed, it
should be interpreted as an average pertaining to repeated shipments made
under given conditions.

Now we prove a result concerning the expected value operator E.

Theorem 4.1. Let X be a random variable with pdf f(x). If a and b are
any two real numbers, then

E(aX + b) = a E(X) + b.

Proof: We will prove only for the continuous case.

E(aX + b) =
∫ ∞

−∞
(a x + b) f(x) dx

=
∫ ∞

−∞
a x f(x) dx +

∫ ∞

−∞
b f(x) dx

= a

∫ ∞

−∞
x f(x) dx + b

= aE(X) + b.

To prove the discrete case, replace the integral by summation. This completes
the proof.

4.3. Variance of Random Variables

The spread of the distribution of a random variable X is its variance.

Definition 4.4. Let X be a random variable with mean µX . The variance
of X, denoted by V ar(X), is defined as

V ar(X) = E
(
[ X − µX ]2

)
.

It is also denoted by σ2
X . The positive square root of the variance is

called the standard deviation of the random variable X. Like variance, the
standard deviation also measures the spread. The following theorem tells us
how to compute the variance in an alternative way.

Theorem 4.2. If X is a random variable with mean µX and variance σ2
X ,

then
σ2

X = E(X2)− ( µX )2.
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Proof:
σ2

X = E
(
[ X − µX ]2

)

= E
(
X2 − 2 µX X + µ2

X

)

= E(X2)− 2 µX E(X) + ( µX )2

= E(X2)− 2 µX µX + ( µX )2

= E(X2)− ( µX )2.

Theorem 4.3. If X is a random variable with mean µX and variance σ2
X ,

then
V ar(aX + b) = a2 V ar(X),

where a and b are arbitrary real constants.

Proof:
V ar(a X + b) = E

(
[ (a X + b)− µaX+b ]2

)

= E
(
[ a X + b− E(a X + b) ]2

)

= E
(
[ a X + b− a µX+ − b ]2

)

= E
(
a2 [ X − µX ]2

)

= a2 E
(
[ X − µX ]2

)

= a2 V ar(X).

Example 4.6. Let X have the density function

f(x) =

{ 2 x
k2 for 0 ≤ x ≤ k

0 otherwise.

For what value of k is the variance of X equal to 2?

Answer: The expected value of X is

E(X) =
∫ k

0
x f(x) dx

=
∫ k

0
x

2 x

k2
dx

=
2
3

k.
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E(X2) =
∫ k

0
x2 f(x) dx

=
∫ k

0
x2 2 x

k2
dx

=
2
4

k2.

Hence, the variance is given by

V ar(X) = E(X2)− ( µX )2

=
2
4

k2 − 4
9

k2

=
1
18

k2.

Since this variance is given to be 2, we get

1
18

k2 = 2

and this implies that k = ±6. But k is given to be greater than 0, hence k

must be equal to 6.

Example 4.7. If the probability density function of the random variable is

f(x) =






1− |x| for |x| < 1

0 otherwise,

then what is the variance of X?

Answer: Since V ar(X) = E(X2)−µ2
X , we need to find the first and second

moments of X. The first moment of X is given by

µX = E(X)

=
∫ ∞

−∞
x f(x) dx

=
∫ 1

−1
x (1− |x|) dx

=
∫ 0

−1
x (1 + x) dx +

∫ 1

0
x (1− x) dx

=
∫ 0

−1
(x + x2) dx +

∫ 1

0
(x− x2) dx

=
1
3
− 1

2
+

1
2
− 1

3
= 0.
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The second moment E(X2) of X is given by

E(X2) =
∫ ∞

−∞
x2 f(x) dx

=
∫ 1

−1
x2 (1− |x|) dx

=
∫ 0

−1
x2 (1 + x) dx +

∫ 1

0
x2 (1− x) dx

=
∫ 0

−1
(x2 + x3) dx +

∫ 1

0
(x2 − x3) dx

=
1
3
− 1

4
+

1
3
− 1

4

=
1
6
.

Thus, the variance of X is given by

V ar(X) = E(X2)− µ2
X =

1
6
− 0 =

1
6
.

Example 4.8. Suppose the random variable X has mean µ and variance
σ2 > 0. What are the values of the numbers a and b such that a + bX has
mean 0 and variance 1?

Answer: The mean of the random variable is 0. Hence
0 = E(a + bX)

= a + b E(X)

= a + b µ.

Thus a = −b µ. Similarly, the variance of a + bX is 1. That is

1 = V ar(a + bX)

= b2 V ar(X)

= b2 σ2.



A

B C

x

The expected area 
of ABC is 0.15
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Hence
b =

1
σ

and a = −µ

σ
or

b = − 1
σ

and a =
µ

σ
.

Example 4.9. Suppose X has the density function

f(x) =
{

3 x2 for 0 < x < 1
0 otherwise.

What is the expected area of a random isosceles right triangle with hy-
potenuse X?

Answer: Let ABC denote this random isosceles right triangle. Let AC = x.
Then

AB = BC =
x√
2

Area of ABC =
1
2

x√
2

x√
2

=
x2

4
The expected area of this random triangle is given by

E(area of random ABC) =
∫ 1

0

x2

4
3 x2 dx =

3
20

.
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For the next example, we need these following results. For −1 < x < 1, let

g(x) =
∞∑

k=0

a xk =
a

1− x
.

Then

g′(x) =
∞∑

k=1

a k xk−1 =
a

(1− x)2
,

and

g′′(x) =
∞∑

k=2

a k (k − 1) xk−2 =
2 a

(1− x)3
.

Example 4.10. If the probability density function of the random variable
X is

f(x) =






(1− p)x−1 p if x = 1, 2, 3, 4, ...,∞

0 otherwise,

then what is the variance of X?

Answer: We want to find the variance of X. But variance of X is defined
as

V ar(X) = E
(
X2
)
− [ E(X) ]2

= E(X(X − 1)) + E(X)− [ E(X) ]2 .

We write the variance in the above manner because E(X2) has no closed form
solution. However, one can find the closed form solution of E(X(X − 1)).
From Example 4.3, we know that E(X) = 1

p . Hence, we now focus on finding
the second factorial moment of X, that is E(X(X − 1)).

E(X(X − 1)) =
∞∑

x=1

x (x− 1) (1− p)x−1 p

=
∞∑

x=2

x (x− 1) (1− p) (1− p)x−2 p

=
2 p (1− p)

(1− (1− p))3
=

2 (1− p)
p2

.

Hence

V ar(X) = E(X(X − 1)) + E(X)− [ E(X) ]2 =
2 (1− p)

p2
+

1
p
− 1

p2
=

1− p

p2
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4.4. Chebychev Inequality

We have taken it for granted, in section 4.2, that the standard deviation
(which is the positive square root of the variance) measures the spread of
a distribution of a random variable. The spread is measured by the area
between “two values”. The area under the pdf between two values is the
probability of X between the two values. If the standard deviation σ measures
the spread, then σ should control the area between the “two values”.

It is well known that if the probability density function is standard nor-
mal, that is

f(x) =
1√
2π

e−
1
2 x2

, −∞ < x <∞,

then the mean µ = 0 and the standard deviation σ = 1, and the area between
the values µ− σ and µ + σ is 68%.

Similarly, the area between the values µ− 2σ and µ + 2σ is 95%. In this
way, the standard deviation controls the area between the values µ− kσ and
µ + kσ for some k if the distribution is standard normal. If we do not know
the probability density function of a random variable, can we find an estimate
of the area between the values µ − kσ and µ + kσ for some given k? This
problem was solved by Chebychev, a well known Russian mathematician. He
proved that the area under f(x) on the interval [µ − kσ, µ + kσ] is at least
1− k−2. This is equivalent to saying the probability that a random variable
is within k standard deviations of the mean is at least 1− k−2.

Theorem 4.4 (Chebychev Inequality). Let X be a random variable with
probability density function f(x). If µ and σ > 0 are the mean and standard
deviation of X, then

P (|X − µ| < k σ) ≥ 1− 1
k2

for any nonzero real positive constant k.



Mean - k SD Mean + k SD

Mean

at least 1-k
- 2
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Proof: We assume that the random variable X is continuous. If X is not
continuous we replace the integral by summation in the following proof. From
the definition of variance, we have the following:

σ2 =
∫ ∞

−∞
(x− µ)2 f(x) dx

=
∫ µ−k σ

−∞
(x− µ)2 f(x) dx +

∫ µ+k σ

µ−k σ
(x− µ)2 f(x) dx

+
∫ ∞

µ+k σ
(x− µ)2 f(x) dx.

Since,
∫ µ+k σ

µ−k σ (x− µ)2 f(x) dx is positive, we get from the above

σ2 ≥
∫ µ−k σ

−∞
(x− µ)2 f(x) dx +

∫ ∞

µ+k σ
(x− µ)2 f(x) dx. (4.1)

If x ∈ (−∞, µ− k σ), then
x ≤ µ− k σ.

Hence
k σ ≤ µ− x

for
k2 σ2 ≤ (µ− x)2.

That is (µ− x)2 ≥ k2 σ2. Similarly, if x ∈ (µ + k σ, ∞), then

x ≥ µ + k σ
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Therefore
k2 σ2 ≤ (µ− x)2.

Thus if x +∈ (µ− k σ, µ + k σ), then

(µ− x)2 ≥ k2 σ2. (4.2)

Using (4.2) and (4.1), we get

σ2 ≥ k2σ2

[∫ µ−k σ

−∞
f(x) dx +

∫ ∞

µ+k σ
f(x) dx

]
.

Hence
1
k2
≥
[∫ µ−k σ

−∞
f(x) dx +

∫ ∞

µ+k σ
f(x) dx

]
.

Therefore
1
k2
≥ P (X ≤ µ− k σ) + P (X ≥ µ + k σ).

Thus
1
k2
≥ P (|X − µ| ≥ k σ)

which is
P (|X − µ| < k σ) ≥ 1− 1

k2
.

This completes the proof of this theorem.

The following integration formula

∫ 1

0
xn (1− x)m dx =

n! m!
(n + m + 1)!

will be used in the next example. In this formula m and n represent any two
positive integers.

Example 4.11. Let the probability density function of a random variable
X be

f(x) =

{
630 x4 (1− x)4 if 0 < x < 1

0 otherwise.

What is the exact value of P (|X−µ| ≤ 2σ)? What is the approximate value
of P (|X − µ| ≤ 2σ) when one uses the Chebychev inequality?
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Answer: First, we find the mean and variance of the above distribution.
The mean of X is given by

E(X) =
∫ 1

0
x f(x) dx

=
∫ 1

0
630 x5 (1− x)4 dx

= 630
5! 4!

(5 + 4 + 1)!

= 630
5! 4!
10!

= 630
2880

3628800

=
630
1260

=
1
2
.

Similarly, the variance of X can be computed from

V ar(X) =
∫ 1

0
x2 f(x) dx− µ2

X

=
∫ 1

0
630 x6 (1− x)4 dx− 1

4

= 630
6! 4!

(6 + 4 + 1)!
− 1

4

= 630
6! 4!
11!

− 1
4

= 630
6
22
− 1

4

=
12
44
− 11

44

=
1
44

.

Therefore, the standard deviation of X is

σ =
√

1
44

= 0.15.
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Thus
P (|X − µ| ≤ 2σ) = P (|X − 0.5| ≤ 0.3)

= P (−0.3 ≤ X − 0.5 ≤ 0.3)

= P (0.2 ≤ X ≤ 0.8)

=
∫ 0.8

0.2
630 x4 (1− x)4 dx

= 0.96.

If we use the Chebychev inequality, then we get an approximation of the
exact value we have. This approximate value is

P (|X − µ| ≤ 2σ) ≥ 1− 1
4

= 0.75

Hence, Chebychev inequality tells us that if we do not know the distribution
of X, then P (|X − µ| ≤ 2σ) is at least 0.75.

Lower the standard deviation, and the smaller is the spread of the distri-
bution. If the standard deviation is zero, then the distribution has no spread.
This means that the distribution is concentrated at a single point. In the
literature, such distributions are called degenerate distributions. The above
figure shows how the spread decreases with the decrease of the standard
deviation.

4.5. Moment Generating Functions

We have seen in Section 3 that there are some distributions, such as
geometric, whose moments are difficult to compute from the definition. A
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moment generating function is a real valued function from which one can
generate all the moments of a given random variable. In many cases, it
is easier to compute various moments of X using the moment generating
function.

Definition 4.5. Let X be a random variable whose probability density
function is f(x). A real valued function M : IR → IR defined by

M(t) = E
(
et X
)

is called the moment generating function of X if this expected value exists
for all t in the interval −h < t < h for some h > 0.

In general, not every random variable has a moment generating function.
But if the moment generating function of a random variable exists, then it
is unique. At the end of this section, we will give an example of a random
variable which does not have a moment generating function.

Using the definition of expected value of a random variable, we obtain
the explicit representation for M(t) as

M(t) =






∑

x∈RX

et x f(x) if X is discrete

∫∞
−∞ et x f(x) dx if X is continuous.

Example 4.12. Let X be a random variable whose moment generating
function is M(t) and n be any natural number. What is the nth derivative
of M(t) at t = 0?

Answer:
d

dt
M(t) =

d

dt
E
(
et X
)

= E

(
d

dt
et X

)

= E
(
X et X
)
.

Similarly,
d2

dt2
M(t) =

d2

dt2
E
(
et X
)

= E

(
d2

dt2
et X

)

= E
(
X2 et X

)
.
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Hence, in general we get

dn

dtn
M(t) =

dn

dtn
E
(
et X
)

= E

(
dn

dtn
et X

)

= E
(
Xn et X

)
.

If we set t = 0 in the nth derivative, we get

dn

dtn
M(t)
∣∣∣∣
t=0

= E
(
Xn et X

)∣∣
t=0

= E (Xn) .

Hence the nth derivative of the moment generating function of X evaluated
at t = 0 is the nth moment of X about the origin.

This example tells us if we know the moment generating function of
a random variable; then we can generate all the moments of X by taking
derivatives of the moment generating function and then evaluating them at
zero.

Example 4.13. What is the moment generating function of the random
variable X whose probability density function is given by

f(x) =

{
e−x for x > 0

0 otherwise?

What are the mean and variance of X?

Answer: The moment generating function of X is

M(t) = E
(
et X
)

=
∫ ∞

0
et x f(x) dx

=
∫ ∞

0
et x e−x dx

=
∫ ∞

0
e−(1−t) x dx

=
1

1− t

[
−e−(1−t) x

]∞
0

=
1

1− t
if 1− t > 0.
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The expected value of X can be computed from M(t) as

E(X) =
d

dt
M(t)
∣∣∣∣
t=0

=
d

dt
(1− t)−1

∣∣∣∣
t=0

= (1− t)−2
∣∣
t=0

=
1

(1− t)2

∣∣∣∣
t=0

= 1.

Similarly

E(X2) =
d2

dt2
M(t)
∣∣∣∣
t=0

=
d2

dt2
(1− t)−1

∣∣∣∣
t=0

= 2 (1− t)−3
∣∣
t=0

=
2

(1− t)3

∣∣∣∣
t=0

= 2.

Therefore, the variance of X is

V ar(X) = E(X2)− (µ)2 = 2− 1 = 1.

Example 4.14. Let X have the probability density function

f(x) =

{ 1
9

(
8
9

)x for x = 0, 1, 2, ...,∞

0 otherwise.

What is the moment generating function of the random variable X?
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Answer:
M(t) = E

(
et X
)

=
∞∑

x=0

et x f(x)

=
∞∑

x=0

et x

(
1
9

) (
8
9

)x

=
(

1
9

) ∞∑

x=0

(
et 8

9

)x

=
(

1
9

)
1

1− et 8
9

if et 8
9

< 1

=
1

9− 8 et
if t < ln

(
9
8

)
.

Example 4.15. Let X be a continuous random variable with density func-
tion

f(x) =
{

b e−b x for x > 0
0 otherwise ,

where b > 0. If M(t) is the moment generating function of X, then what is
M(−6 b)?

Answer:
M(t) = E

(
et X
)

=
∫ ∞

0
b et x e−b x dx

= b

∫ ∞

0
e−(b−t) x dx

=
b

b− t

[
−e−(b−t) x

]∞
0

=
b

b− t
if b− t > 0.

Hence M(−6 b) = b
7b = 1

7 .

Example 4.16. Let the random variable X have moment generating func-
tion M(t) = (1− t)−2 for t < 1. What is the third moment of X about the
origin?

Answer: To compute the third moment E(X3) of X about the origin, we
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need to compute the third derivative of M(t) at t = 0.

M(t) = (1− t)−2

M ′(t) = 2 (1− t)−3

M ′′(t) = 6 (1− t)−4

M ′′′(t) = 24 (1− t)−5 .

Thus the third moment of X is given by

E
(
X3
)

=
24

(1− 0)5
= 24.

Theorem 4.5. Let M(t) be the moment generating function of the random
variable X. If

M(t) = a0 + a1 t + a2 t2 + · · · + an tn + · · · (4.3)

is the Taylor series expansion of M(t), then

E (Xn) = (n!) an

for all natural number n.

Proof: Let M(t) be the moment generating function of the random variable
X. The Taylor series expansion of M(t) about 0 is given by

M(t) = M(0) +
M ′(0)

1!
t +

M ′′(0)
2!

t2 +
M ′′′(0)

3!
t3 + · · · + M (n)(0)

n!
tn + · · ·

Since E(Xn) = M (n)(0) for n ≥ 1 and M(0) = 1, we have

M(t) = 1 +
E(X)

1!
t +

E(X2)
2!

t2 +
E(X3)

3!
t3 + · · · + E(Xn)

n!
tn + · · · (4.4)

From (4.3) and (4.4), equating the coefficients of the like powers of t, we
obtain

an =
E (Xn)

n!
which is

E (Xn) = (n!) an.

This proves the theorem.
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Example 4.17. What is the 479th moment of X about the origin, if the
moment generating function of X is 1

1+t?

Answer The Taylor series expansion of M(t) = 1
1+t can be obtained by using

long division (a technique we have learned in high school).

M(t) =
1

1 + t

=
1

1− (−t)
= 1 + (−t) + (−t)2 + (−t)3 + · · · + (−t)n + · · ·
= 1− t + t2 − t3 + t4 + · · · + (−1)ntn + · · ·

Therefore an = (−1)n and from this we obtain a479 = −1. By Theorem 4.5,

E
(
X479
)

= (479!) a479 = − 479!

Example 4.18. If the moment generating of a random variable X is

M(t) =
∞∑

j=0

e(t j−1)

j!
,

then what is the probability of the event X = 2?

Answer: By examining the given moment generating function of X, it
is easy to note that X is a discrete random variable with space RX =
{0, 1, 2, · · · ,∞}. Hence by definition, the moment generating function of
X is

M(t) =
∞∑

j=0

et j f(j). (4.5)

But we are given that

M(t) =
∞∑

j=0

e(t j−1)

j!

=
∞∑

j=0

e−1

j!
et j .

From (4.5) and the above, equating the coefficients of etj , we get

f(j) =
e−1

j!
for j = 0, 1, 2, ...,∞.
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Thus, the probability of the event X = 2 is given by

P (X = 2) = f(2) =
e−1

2!
=

1
2 e

.

Example 4.19. Let X be a random variable with

E (Xn) = 0.8 for n = 1, 2, 3, ...,∞.

What are the moment generating function and probability density function
of X?

Answer:

M(t) = M(0) +
∞∑

n=1

M (n)(0)
(

tn

n!

)

= M(0) +
∞∑

n=1

E (Xn)
(

tn

n!

)

= 1 + 0.8
∞∑

n=1

(
tn

n!

)

= 0.2 + 0.8 + 0.8
∞∑

n=1

(
tn

n!

)

= 0.2 + 0.8
∞∑

n=0

(
tn

n!

)

= 0.2 e0 t + 0.8 e1 t.

Therefore, we get f(0) = P (X = 0) = 0.2 and f(1) = P (X = 1) = 0.8.
Hence the moment generating function of X is

M(t) = 0.2 + 0.8 et,

and the probability density function of X is

f(x) =

{ |x− 0.2| for x = 0, 1

0 otherwise.

Example 4.20. If the moment generating function of a random variable X

is given by

M(t) =
5
15

et +
4
15

e2 t +
3
15

e3 t +
2
15

e4 t +
1
15

e5 t,
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then what is the probability density function of X? What is the space of the
random variable X?

Answer: The moment generating function of X is given to be

M(t) =
5
15

et +
4
15

e2 t +
3
15

e3 t +
2
15

e4 t +
1
15

e5 t.

This suggests that X is a discrete random variable. Since X is a discrete
random variable, by definition of the moment generating function, we see
that

M(t) =
∑

x∈RX

et x f(x)

= et x1 f(x1) + et x2 f(x2) + et x3 f(x3) + et x4 f(x4) + et x5 f(x5).

Hence we have
f(x1) = f(1) =

5
15

f(x2) = f(2) =
4
15

f(x3) = f(3) =
3
15

f(x4) = f(4) =
2
15

f(x5) = f(5) =
1
15

.

Therefore the probability density function of X is given by

f(x) =
6− x

15
for x = 1, 2, 3, 4, 5

and the space of the random variable X is

RX = {1, 2, 3, 4, 5}.

Example 4.21. If the probability density function of a discrete random
variable X is

f(x) =
6
π2 x2

, for x = 1, 2, 3, ...,∞,

then what is the moment generating function of X?
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Answer: If the moment generating function of X exists, then

M(t) =
∞∑

x=1

etx f(x)

=
∞∑

x=1

etx

(√
6
π x

)2

=
∞∑

x=1

(
etx 6
π2 x2

)

=
6
π2

∞∑

x=1

etx

x2
.

Now we show that the above infinite series diverges if t belongs to the interval
(−h, h) for any h > 0. To prove that this series is divergent, we do the ratio
test, that is

lim
n→∞

(
an+1

an

)
= lim

n→∞

(
et (n+1)

(n + 1)2
n2

et n

)

= lim
n→∞

(
et n et

(n + 1)2
n2

et n

)

= lim
n→∞

(
et

(
n

n + 1

)2
)

= et.

For any h > 0, since et is not always less than 1 for all t in the interval
(−h, h), we conclude that the above infinite series diverges and hence for
this random variable X the moment generating function does not exist.

Notice that for the above random variable, E [Xn] does not exist for
any natural number n. Hence the discrete random variable X in Example
4.21 has no moments. Similarly, the continuous random variable X whose
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probability density function is

f(x) =






1
x2 for 1 ≤ x <∞

0 otherwise,

has no moment generating function and no moments.

In the following theorem we summarize some important properties of the
moment generating function of a random variable.

Theorem 4.6. Let X be a random variable with the moment generating
function MX(t). If a and b are any two real constants, then

MX+a(t) = ea t MX(t) (4.6)

Mb X(t) = MX(b t) (4.7)

MX+a
b

(t) = e
a
b t MX

(
t

b

)
. (4.8)

Proof: First, we prove (4.6).

MX+a(t) = E
(
et (X+a)

)

= E
(
et X+t a

)

= E
(
et X et a

)

= et a E
(
et X
)

= et a MX(t).

Similarly, we prove (4.7).

Mb X(t) = E
(
et (b X)
)

= E
(
e(t b) X
)

= MX(t b).

By using (4.6) and (4.7), we easily get (4.8).

MX+a
b

(t) = MX
b + a

b
(t)

= e
a
b t MX

b
(t)

= e
a
b t MX

(
t

b

)
.
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This completes the proof of this theorem.

Definition 4.6. The nth factorial moment of a random variable X is
E(X(X − 1)(X − 2) · · · (X − n + 1)).

Definition 4.7. The factorial moment generating function (FMGF) of X is
denoted by G(t) and defined as

G(t) = E
(
tX
)
.

It is not difficult to establish a relationship between the moment generat-
ing function (MGF) and the factorial moment generating function (FMGF).
The relationship between them is the following:

G(t) = E
(
tX
)

= E
(

eln tX
)

= E
(
eX ln t
)

= M(ln t).

Thus, if we know the MGF of a random variable, we can determine its FMGF
and conversely.

Definition 4.8. Let X be a random variable. The characteristic function
φ(t) of X is defined as

φ(t) = E
(
ei t X
)

= E ( cos(tX) + i sin(tX) )

= E ( cos(tX) ) + i E ( sin(tX) ) .

The probability density function can be recovered from the characteristic
function by using the following formula

f(x) =
1

2π

∫ ∞

−∞
e−i t x φ(t) dt.

Unlike the moment generating function, the characteristic function of a
random variable always exists. For example, the Cauchy random variable X

with probability density f(x) = 1
π(1+x2) has no moment generating function.

However, the characteristic function is

φ(t) = E
(
ei t X
)

=
∫ ∞

−∞

eitx

π(1 + x2)
dx

= e−|t|.
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To evaluate the above integral one needs the theory of residues from the
complex analysis.

The characteristic function φ(t) satisfies the same set of properties as the
moment generating functions as given in Theorem 4.6.

The following integrals
∫ ∞

0
xm e−x dx = m! if m is a positive integer

and ∫ ∞

0

√
x e−x dx =

√
π

2
are needed for some problems in the Review Exercises of this chapter. These
formulas will be discussed in Chapter 6 while we describe the properties and
usefulness of the gamma distribution.

We end this chapter with the following comment about the Taylor’s se-
ries. Taylor’s series was discovered to mimic the decimal expansion of real
numbers. For example

125 = 1 (10)2 + 2 (10)1 + 5 (10)0

is an expansion of the number 125 with respect to base 10. Similarly,

125 = 1 (9)2 + 4 (9)1 + 8 (9)0

is an expansion of the number 125 in base 9 and it is 148. Since given a
function f : IR → IR and x ∈ IR, f(x) is a real number and it can be expanded
with respect to the base x. The expansion of f(x) with respect to base x will
have a form

f(x) = a0x
0 + a1x

1 + a2x
2 + a3x

3 + · · ·

which is

f(x) =
∞∑

k=0

akxk.

If we know the coefficients ak for k = 0, 1, 2, 3, ..., then we will have the
expansion of f(x) in base x. Taylor found the remarkable fact that the the
coefficients ak can be computed if f(x) is sufficiently differentiable. He proved
that for k = 1, 2, 3, ...

ak =
f (k)(0)

k!
with f (0) = f(0).
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4.6. Review Exercises

1. In a state lottery a five-digit integer is selected at random. If a player
bets 1 dollar on a particular number, the payoff (if that number is selected)
is $500 minus the $1 paid for the ticket. Let X equal the payoff to the better.
Find the expected value of X.

2. A discrete random variable X has probability density function of the form

f(x) =

{
c (8− x) for x = 0, 1, 2, 3, 4, 5

0 otherwise.

(a) Find the constant c. (b) Find P (X > 2). (c) Find the expected value
E(X) for the random variable X.

3. A random variable X has a cumulative distribution function

F (x) =






1
2x if 0 < x ≤ 1

x− 1
2 if 1 < x ≤ 3

2 .

(a) Graph F (x). (b) Graph f(x). (c) Find P (X ≤ 0.5). (d) Find P (X ≥ 0.5).
(e) Find P (X ≤ 1.25). (f) Find P (X = 1.25).

4. Let X be a random variable with probability density function

f(x) =

{ 1
8x for x = 1, 2, 5

0 otherwise.

(a) Find the expected value of X. (b) Find the variance of X. (c) Find the
expected value of 2X + 3. (d) Find the variance of 2X + 3. (e) Find the
expected value of 3X − 5X2 + 1.

5. The measured radius of a circle, R, has probability density function

f(r) =

{ 6 r (1− r) if 0 < r < 1

0 otherwise.

(a) Find the expected value of the radius. (b) Find the expected circumfer-
ence. (c) Find the expected area.

6. Let X be a continuous random variable with density function

f(x) =






θ x + 3
2 θ

3
2 x2 for 0 < x < 1√

θ

0 otherwise,
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where θ > 0. What is the expected value of X?

7. Suppose X is a random variable with mean µ and variance σ2 > 0. For
what value of a, where a > 0 is E

([
a X − 1

a

]2) minimized?

8. A rectangle is to be constructed having dimension X by 2X, where X is
a random variable with probability density function

f(x) =

{ 1
2 for 0 < x < 2

0 otherwise.

What is the expected area of the rectangle?

9. A box is to be constructed so that the height is 10 inches and its base
is X inches by X inches. If X has a uniform distribution over the interval
[2, 8], then what is the expected volume of the box in cubic inches?

10. If X is a random variable with density function

f(x) =






1.4 e−2x + 0.9 e−3x for x > 0

0 elsewhere,

then what is the expected value of X?

11. A fair coin is tossed. If a head occurs, 1 die is rolled; if a tail occurs, 2
dice are rolled. Let X be the total on the die or dice. What is the expected
value of X?

12. If velocities of the molecules of a gas have the probability density
(Maxwell’s law)

f(v) =





a v2e−h2 v2

for v ≥ 0

0 otherwise,

then what are the expectation and the variance of the velocity of the
molecules and also the magnitude of a for some given h?

13. A couple decides to have children until they get a girl, but they agree to
stop with a maximum of 3 children even if they haven’t gotten a girl. If X

and Y denote the number of children and number of girls, respectively, then
what are E(X) and E(Y )?

14. In roulette, a wheel stops with equal probability at any of the 38 numbers
0, 00, 1, 2, ..., 36. If you bet $1 on a number, then you win $36 (net gain is
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$35) if the number comes up; otherwise, you lose your dollar. What are your
expected winnings?

15. If the moment generating function for the random variable X is MX(t) =
1

1+t , what is the third moment of X about the point x = 2?

16. If the mean and the variance of a certain distribution are 2 and 8, what
are the first three terms in the series expansion of the moment generating
function?

17. Let X be a random variable with density function

f(x) =






a e−ax for x > 0

0 otherwise,

where a > 0. If M(t) denotes the moment generating function of X, what is
M(−3a)?

18. Suppose the random variable X has moment generating

M(t) =
1

(1− βt)k
, for t <

1
β

.

What is the nth moment of X?

19. Two balls are dropped in such a way that each ball is equally likely to
fall into any one of four holes. Both balls may fall into the same hole. Let X

denote the number of unoccupied holes at the end of the experiment. What
is the moment generating function of X?

20. If the moment generating function of X is M(t) = 1
(1−t)2 for t < 1, then

what is the fourth moment of X?

21. Let the random variable X have the moment generating function

M(t) =
e3t

1− t2
, −1 < t < 1.

What are the mean and the variance of X, respectively?

22. Let the random variable X have the moment generating function

M(t) = e3t+t2 .

What is the second moment of X about x = 0?
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23. Suppose the random variable X has the cumulative density function
F (x). Show that the expected value of the random variable (X − c)2 is
minimum if c equals the expected value of X.

24. Suppose the continuous random variable X has the cumulative density
function F (x). Show that the expected value of the random variable |X − c|
is minimum if c equals the median of X (that is, F (c) = 0.5).

25. Let the random variable X have the probability density function

f(x) =
1
2

e−|x| −∞ < x <∞.

What are the expected value and the variance of X?

26. If MX(t) = k (2 + 3et)4, what is the value of k?

27. Given the moment generating function of X as

M(t) = 1 + t + 4t2 + 10t3 + 14t4 + · · ·

what is the third moment of X about its mean?

28. A set of measurements X has a mean of 7 and standard deviation of 0.2.
For simplicity, a linear transformation Y = aX + b is to be applied to make
the mean and variance both equal to 1. What are the values of the constants
a and b?

29. A fair coin is to be tossed 3 times. The player receives 10 dollars if all
three turn up heads and pays 3 dollars if there is one or no heads. No gain or
loss is incurred otherwise. If Y is the gain of the player, what the expected
value of Y ?

30. If X has the probability density function

f(x) =
{

e−x for x > 0
0 otherwise,

then what is the expected value of the random variable Y = e
3
4 X + 6?

31. If the probability density function of the random variable X if

f(x) =






(1− p)x−1 p if x = 1, 2, 3, ...,∞

0 otherwise,

then what is the expected value of the random variable X−1 ?
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Chapter 5

SOME SPECIAL

DISCRETE

DISTRIBUTIONS

Given a random experiment, we can find the set of all possible outcomes
which is known as the sample space. Objects in a sample space may not be
numbers. Thus, we use the notion of random variable to quantify the qual-
itative elements of the sample space. A random variable is characterized by
either its probability density function or its cumulative distribution function.
The other characteristics of a random variable are its mean, variance and
moment generating function. In this chapter, we explore some frequently
encountered discrete distributions and study their important characteristics.

5.1. Bernoulli Distribution

A Bernoulli trial is a random experiment in which there are precisely two
possible outcomes, which we conveniently call ‘failure’ (F) and ‘success’ (S).
We can define a random variable from the sample space {S, F} into the set
of real numbers as follows:

X(F ) = 0 X(S) = 1.



F

S

1= X(S)

X

X(F) = 0

Sample Space
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The probability density function of this random variable is

f(0) = P (X = 0) = 1− p

f(1) = P (X = 1) = p,

where p denotes the probability of success. Hence

f(x) = px (1− p)1−x, x = 0, 1.

Definition 5.1. The random variable X is called the Bernoulli random
variable if its probability density function is of the form

f(x) = px (1− p)1−x, x = 0, 1

where p is the probability of success.

We denote the Bernoulli random variable by writing X ∼ BER(p).

Example 5.1. What is the probability of getting a score of not less than 5
in a throw of a six-sided die?

Answer: Although there are six possible scores {1, 2, 3, 4, 5, 6}, we are
grouping them into two sets, namely {1, 2, 3, 4} and {5, 6}. Any score in
{1, 2, 3, 4} is a failure and any score in {5, 6} is a success. Thus, this is a
Bernoulli trial with

P (X = 0) = P (failure) =
4
6

and P (X = 1) = P (success) =
2
6
.

Hence, the probability of getting a score of not less than 5 in a throw of a
six-sided die is 2

6 .
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Theorem 5.1. If X is a Bernoulli random variable with parameter p, then
the mean, variance and moment generating functions are respectively given
by

µX = p

σ2
X = p (1− p)

MX(t) = (1− p) + p et.

Proof: The mean of the Bernoulli random variable is

µX =
1∑

x=0

x f(x)

=
1∑

x=0

x px (1− p)1−x

= p.

Similarly, the variance of X is given by

σ2
X =

1∑

x=0

(x− µX)2 f(x)

=
1∑

x=0

(x− p)2 px (1− p)1−x

= p2 (1− p) + p (1− p)2

= p (1− p) [p + (1− p)]

= p (1− p).

Next, we find the moment generating function of the Bernoulli random vari-
able

M(t) = E
(
etX
)

=
1∑

x=0

etx px (1− p)1−x

= (1− p) + et p.

This completes the proof. The moment generating function of X and all the
moments of X are shown below for p = 0.5. Note that for the Bernoulli
distribution all its moments about zero are same and equal to p.
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5.2. Binomial Distribution

Consider a fixed number n of mutually independent Bernoulli trails. Sup-
pose these trials have same probability of success, say p. A random variable
X is called a binomial random variable if it represents the total number of
successes in n independent Bernoulli trials.

Now we determine the probability density function of a binomial random
variable. Recall that the probability density function of X is defined as

f(x) = P (X = x).

Thus, to find the probability density function of X we have to find the prob-
ability of x successes in n independent trails.

If we have x successes in n trails, then the probability of each n-tuple
with x successes and n− x failures is

px (1− p)n−x.

However, there are
(n

x

)
tuples with x successes and n− x failures in n trials.

Hence
P (X = x) =

(
n

x

)
px (1− p)n−x.

Therefore, the probability density function of X is

f(x) =
(

n

x

)
px (1− p)n−x, x = 0, 1, ..., n.

Definition 5.2. The random variable X is called the binomial random
variable with parameters p and n if its probability density function is of the
form

f(x) =
(

n

x

)
px (1− p)n−x, x = 0, 1, ..., n
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where 0 < p < 1 is the probability of success.

We will denote a binomial random variable with parameters p and n as
X ∼ BIN(n, p).

Example 5.2. Is the real valued function f(x) given by

f(x) =
(

n

x

)
px (1− p)n−x, x = 0, 1, ..., n

where n and p are parameters, a probability density function?

Answer: To answer this question, we have to check that f(x) is nonnegative
and
∑n

x=0 f(x) is 1. It is easy to see that f(x) ≥ 0. We show that sum is
one.

n∑

x=0

f(x) =
n∑

x=0

(
n

x

)
px (1− p)n−x

= (p + 1− p)n

= 1.

Hence f(x) is really a probability density function.

Example 5.3. On a five-question multiple-choice test there are five possible
answers, of which one is correct. If a student guesses randomly and indepen-
dently, what is the probability that she is correct only on questions 1 and
4?

Answer: Here the probability of success is p = 1
5 , and thus 1 − p = 4

5 .
Therefore, the probability that she is correct on questions 1 and 4 is

P (correct on questions 1 and 4) =p2(1− p)3

=
(

1
5

)2 (4
5

)3

=
64
55

= 0.02048.
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Example 5.4. On a five-question multiple-choice test there are five possible
answers, of which one is correct. If a student guesses randomly and indepen-
dently, what is the probability that she is correct only on two questions?

Answer: Here the probability of success is p = 1
5 , and thus 1−p = 4

5 . There
are
(5
2

)
different ways she can be correct on two questions. Therefore, the

probability that she is correct on two questions is

P (correct on two questions) =
(

5
2

)
p2(1− p)3

= 10
(

1
5

)2 (4
5

)3

=
640
55

= 0.2048.

Example 5.5. What is the probability of rolling two sixes and three nonsixes
in 5 independent casts of a fair die?

Answer: Let the random variable X denote the number of sixes in 5 in-
dependent casts of a fair die. Then X is a binomial random variable with
probability of success p and n = 5. The probability of getting a six is p = 1

6 .
Hence

P (X = 2) = f(2) =
(

5
2

) (
1
6

)2 (5
6

)3

= 10
(

1
36

) (
125
216

)

=
1250
7776

= 0.160751.

Example 5.6. What is the probability of rolling at most two sixes in 5
independent casts of a fair die?

Answer: Let the random variable X denote number of sixes in 5 independent
casts of a fair die. Then X is a binomial random variable with probability
of success p and n = 5. The probability of getting a six is p = 1

6 . Hence, the
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probability of rolling at most two sixes is

P (X ≤ 2) = F (2) = f(0) + f(1) + f(2)

=
(

5
0

) (
1
6

)0 (5
6

)5

+
(

5
1

) (
1
6

)1 (5
6

)4

+
(

5
2

) (
1
6

)2 (5
6

)3

=
2∑

k=0

(
5
k

) (
1
6

)k (5
6

)5−k

=
1
2

(0.9421 + 0.9734) = 0.9577 (from binomial table)

Theorem 5.2. If X is binomial random variable with parameters p and n,
then the mean, variance and moment generating functions are respectively
given by

µX = n p

σ2
X = n p (1− p)

MX(t) =
[
(1− p) + p et

]n
.

Proof: First, we determine the moment generating function M(t) of X and
then we generate mean and variance from M(t).

M(t) = E
(
etX
)

=
n∑

x=0

etx

(
n

x

)
px (1− p)n−x

=
n∑

x=0

(
n

x

) (
p et
)x (1− p)n−x

=
(
p et + 1− p

)n
.

Hence
M ′(t) = n

(
p et + 1− p

)n−1
p et.
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Therefore
µX = M ′(0) = n p.

Similarly

M ′′(t) = n
(
p et + 1− p

)n−1
p et + n (n− 1)

(
p et + 1− p

)n−2 (
p et
)2

.

Therefore
E(X2) = M ′′(0) = n (n− 1) p2 + n p.

Hence

V ar(X) = E(X2)− µ2
X = n (n− 1) p2 + n p− n2 p2 = n p (1− p).

This completes the proof.

Example 5.7. Suppose that 2000 points are selected independently and at
random from the unit squares S = {(x, y) | 0 ≤ x, y ≤ 1}. Let X equal the
number of points that fall in A = {(x, y) |x2+y2 < 1}. How is X distributed?
What are the mean, variance and standard deviation of X?

Answer: If a point falls in A, then it is a success. If a point falls in the
complement of A, then it is a failure. The probability of success is

p =
area of A
area of S

=
1
4
π.

Since, the random variable represents the number of successes in 2000 inde-
pendent trials, the random variable X is a binomial with parameters p = π

4

and n = 2000, that is X ∼ BIN(2000, π
4 ).



Probability and Mathematical Statistics 115

Hence by Theorem 5.2,

µX = 2000
π

4
= 1570.8,

and
σ2

X = 2000
(
1− π

4

) π
4

= 337.1.

The standard deviation of X is

σX =
√

337.1 = 18.36.

Example 5.8. Let the probability that the birth weight (in grams) of babies
in America is less than 2547 grams be 0.1. If X equals the number of babies
that weigh less than 2547 grams at birth among 20 of these babies selected
at random, then what is P (X ≤ 3)?

Answer: If a baby weighs less than 2547, then it is a success; otherwise it is
a failure. Thus X is a binomial random variable with probability of success
p and n = 20. We are given that p = 0.1. Hence

P (X ≤ 3) =
3∑

k=0

(
20
k

) (
1
10

)k ( 9
10

)20−k

= 0.867 (from table).

Example 5.9. Let X1, X2, X3 be three independent Bernoulli random vari-
ables with the same probability of success p. What is the probability density
function of the random variable X = X1 + X2 + X3?

Answer: The sample space of the three independent Bernoulli trials is

S = {FFF, FFS, FSF, SFF, FSS, SFS, SSF, SSS}.



1

2

3

FFF
FFS
FSF
SFF
FSS
SFS
SSF
SSSS

X

Rx

Sum of three Bernoulli Trials

0
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The random variable X = X1 + X2 + X3 represents the number of successes
in each element of S. The following diagram illustrates this.

Let p be the probability of success. Then

f(0) = P (X = 0) = P (FFF ) = (1− p)3

f(1) = P (X = 1) = P (FFS) + P (FSF ) + P (SFF ) = 3 p (1− p)2

f(2) = P (X = 2) = P (FSS) + P (SFS) + P (SSF ) = 3 p2 (1− p)

f(3) = P (X = 3) = P (SSS) = p3.

Hence
f(x) =

(
3
x

)
px (1− p)3−x, x = 0, 1, 2, 3.

Thus
X ∼ BIN(3, p).

In general, if Xi ∼ BER(p), then
∑n

i=1 Xi ∼ BIN(n, p) and hence

E

(
n∑

i=1

Xi

)
= n p

and

V ar

(
n∑

i=1

Xi

)
= n p (1− p).

The binomial distribution can arise whenever we select a random sample
of n units with replacement. Each unit in the population is classified into one
of two categories according to whether it does or does not possess a certain
property. For example, the unit may be a person and the property may be



Sample Space   

FFFFFFS
FFFFFS
FFFFS
FFFS
FFS
FS
S

X

1     2     3    4     5   6     7

Geometric Random Variable

Space of the random variable
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whether he intends to vote “yes”. If the unit is a machine part, the property
may be whether the part is defective and so on. If the proportion of units in
the population possessing the property of interest is p, and if Z denotes the
number of units in the sample of size n that possess the given property, then

Z ∼ BIN(n, p).

5.3. Geometric Distribution

If X represents the total number of successes in n independent Bernoulli
trials, then the random variable

X ∼ BIN(n, p),

where p is the probability of success of a single Bernoulli trial and the prob-
ability density function of X is given by

f(x) =
(

n

x

)
px (1− p)n−x, x = 0, 1, ..., n.

Let X denote the trial number on which the first success occurs.

Hence the probability that the first success occurs on xth trial is given by

f(x) = P (X = x) = (1− p)x−1 p.

Hence, the probability density function of X is

f(x) = (1− p)x−1 p x = 1, 2, 3, ..., ∞,

where p denotes the probability of success in a single Bernoulli trial.
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Definition 5.3. A random variable X has a geometric distribution if its
probability density function is given by

f(x) = (1− p)x−1 p x = 1, 2, 3, ..., ∞,

where p denotes the probability of success in a single Bernoulli trial.

If X has a geometric distribution we denote it as X ∼ GEO(p).

Example 5.10. Is the real valued function f(x) defined by

f(x) = (1− p)x−1 p x = 1, 2, 3, ...,∞

where 0 < p < 1 is a parameter, a probability density function?

Answer: It is easy to check that f(x) ≥ 0. Thus we only show that the sum
is one.

∞∑

x=1

f(x) =
∞∑

x=1

(1− p)x−1 p

= p
∞∑

y=0

(1− p)y, where y = x− 1

= p
1

1− (1− p)
= 1.

Hence f(x) is a probability density function.

Example 5.11. The probability that a machine produces a defective item
is 0.02. Each item is checked as it is produced. Assuming that these are
independent trials, what is the probability that at least 100 items must be
checked to find one that is defective?
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Answer: Let X denote the trial number on which the first defective item is
observed. We want to find

P (X ≥ 100) =
∞∑

x=100

f(x)

=
∞∑

x=100

(1− p)x−1 p

= (1− p)99
∞∑

y=0

(1− p)y p

= (1− p)99

= (0.98)99 = 0.1353.

Hence the probability that at least 100 items must be checked to find one
that is defective is 0.1353.

Example 5.12. A gambler plays roulette at Monte Carlo and continues
gambling, wagering the same amount each time on “Red”, until he wins for
the first time. If the probability of “Red” is 18

38 and the gambler has only
enough money for 5 trials, then (a) what is the probability that he will win
before he exhausts his funds; (b) what is the probability that he wins on the
second trial?

Answer:
p = P (Red) =

18
38

.

(a) Hence the probability that he will win before he exhausts his funds is
given by

P (X ≤ 5) = 1− P (X ≥ 6)

= 1− (1− p)5

= 1−
(

1− 18
38

)5

= 1− (0.5263)5 = 1− 0.044 = 0.956.

(b) Similarly, the probability that he wins on the second trial is given by

P (X = 2) = f(2)

= (1− p)2−1 p

=
(

1− 18
38

) (
18
38

)

=
360
1444

= 0.2493.
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The following theorem provides us with the mean, variance and moment
generating function of a random variable with the geometric distribution.

Theorem 5.3. If X is a geometric random variable with parameter p, then
the mean, variance and moment generating functions are respectively given
by

µX =
1
p

σ2
X =

1− p

p2

MX(t) =
p et

1− (1− p) et
, if t < −ln(1− p).

Proof: First, we compute the moment generating function of X and then
we generate all the mean and variance of X from it.

M(t) =
∞∑

x=1

etx (1− p)x−1 p

= p
∞∑

y=0

et(y+1) (1− p)y, where y = x− 1

= p et
∞∑

y=0

(
et (1− p)

)y

=
p et

1− (1− p) et
, if t < −ln(1− p).
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Differentiating M(t) with respect to t, we obtain

M ′(t) =
(1− (1− p) et) p et + p et (1− p) et

[1− (1− p)et]2

=
p et [1− (1− p) et + (1− p) et]

[1− (1− p)et]2

=
p et

[1− (1− p)et]2
.

Hence
µX = E(X) = M ′(0) =

1
p
.

Similarly, the second derivative of M(t) can be obtained from the first deriva-
tive as

M ′′(t) =
[1− (1− p) et]2 p et + p et 2 [1− (1− p) et] (1− p) et

[1− (1− p)et]4
.

Hence
M ′′(0) =

p3 + 2 p2(1− p)
p4

=
2− p

p2
.

Therefore, the variance of X is

σ2
X = M ′′(0)− ( M ′(0) )2

=
2− p

p2
− 1

p2

=
1− p

p2
.

This completes the proof of the theorem.

Theorem 5.4. The random variable X is geometric if and only if it satisfies
the memoryless property, that is

P (X > m + n / X > n) = P (X > m)

for all natural numbers n and m.

Proof: It is easy to check that the geometric distribution satisfies the lack
of memory property

P (X > m + n / X > n) = P (X > m)
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which is

P (X > m + n and X > n) = P (X > m) P (X > n). (5.1)

If X is geometric, that is X ∼ (1− p)x−1 p, then

P (X > n + m) =
∞∑

x=n+m+1

(1− p)x−1 p

= (1− p)n+m

= (1− p)n (1− p)m

= P (X > n) P (X > m).

Hence the geometric distribution has the lack of memory property. Let X be
a random variable which satisfies the lack of memory property, that is

P (X > m + n and X > n) = P (X > m) P (X > n).

We want to show that X is geometric. Define g : N→ IR by

g(n) := P (X > n) (5.2)

Using (5.2) in (5.1), we get

g(m + n) = g(m) g(n) ∀m, n ∈ N, (5.3)

since P (X > m + n and X > n) = P (X > m + n). Letting m = 1 in (5.3),
we see that

g(n + 1) = g(n) g(1)

= g(n− 1) g(1)2

= g(n− 2) g(1)3

= · · · · · ·
= g(n− (n− 1)) g(1)n

= g(1)n+1

= an+1,

where a is an arbitrary constant. Hence g(n) = an. From (5.2), we get

1− F (n) = P (X > n) = an
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and thus
F (n) = 1− an.

Since F (n) is a distribution function

1 = lim
n→∞

F (n) = lim
n→∞

(1− an) .

From the above, we conclude that 0 < a < 1. We rename the constant a as
(1− p). Thus,

F (n) = 1− (1− p)n.

The probability density function of X is hence

f(1) = F (1) = p

f(2) = F (2)− F (1) = 1− (1− p)2 − 1 + (1− p) = (1− p) p

f(3) = F (3)− F (2) = 1− (1− p)3 − 1 + (1− p)2 = (1− p)2 p

· · · · · ·
f(x) = F (x)− F (x− 1) = (1− p)x−1 p.

Thus X is geometric with parameter p. This completes the proof.

The difference between the binomial and the geometric distributions is
the following. In binomial distribution, the number of trials was predeter-
mined, whereas in geometric it is the random variable.

5.4. Negative Binomial Distribution

Let X denote the trial number on which the rth success occurs. Here r

is a positive integer greater than or equal to one. This is equivalent to saying
that the random variable X denotes the number of trials needed to observe
the rth successes. Suppose we want to find the probability that the fifth head
is observed on the 10th independent flip of an unbiased coin. This is a case
of finding P (X = 10). Let us find the general case P (X = x).

P (X = x) = P (first x − 1 trials contain x − r failures and r − 1 successes)

· P (rth success in x th trial)

=
(

x− 1
r − 1

)
pr−1 (1− p)x−r p

=
(

x− 1
r − 1

)
pr (1− p)x−r, x = r, r + 1, ...,∞.
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Hence the probability density function of the random variable X is given by

f(x) =
(

x− 1
r − 1

)
pr (1− p)x−r, x = r, r + 1, ...,∞.

Notice that this probability density function f(x) can also be expressed as

f(x) =
(

x + r − 1
r − 1

)
pr (1− p)x, x = 0, 1, ...,∞.

Definition 5.4. A random variable X has the negative binomial (or Pascal)
distribution if its probability density function is of the form

f(x) =
(

x− 1
r − 1

)
pr (1− p)x−r, x = r, r + 1, ...,∞,

where p is the probability of success in a single Bernoulli trial. We denote
the random variable X whose distribution is negative binomial distribution
by writing X ∼ NBIN(r, p).

We need the following technical result to show that the above function
is really a probability density function. The technical result we are going to
establish is called the negative binomial theorem.
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Theorem 5.5. Let r be a nonzero positive integer. Then

(1− y)−r =
∞∑

x=r

(
x− 1
r − 1

)
yx−r

where |y| < 1.

Proof: Define
h(y) = (1− y)−r.

Now expanding h(y) by Taylor series method about y = 0, we get

(1− y)−r =
∞∑

k=0

h(k)(0)
k!

yk,

where h(k)(y) is the kth derivative of h. This kth derivative of h(y) can be
directly computed and direct computation gives

h(k)(y) = r (r + 1) (r + 2) · · · (r + k − 1) (1− y)−(r+k).

Hence, we get

h(k)(0) = r (r + 1) (r + 2) · · · (r + k − 1) =
(r + k − 1)!

(r − 1)!
.

Letting this into the Taylor’s expansion of h(y), we get

(1− y)−r =
∞∑

k=0

(r + k − 1)!
(r − 1)! k!

yk

=
∞∑

k=0

(
r + k − 1

r − 1

)
yk.

Letting x = k + r, we get

(1− y)−r =
∞∑

x=r

(
x− 1
r − 1

)
yx−r.

This completes the proof of the theorem.

Theorem 5.5 can also be proved using the geometric series

∞∑

n=0

yn =
1

1− y
(5.4)
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where |y| < 1. Differentiating k times both sides of the equality (5.4) and
then simplifying we have

∞∑

n=k

(
n

k

)
yn−k =

1
(1− y)k+1

. (5.5)

Letting n = x− 1 and k = r − 1 in (5.5), we have the asserted result.

Example 5.13. Is the real valued function defined by

f(x) =
(

x− 1
r − 1

)
pr (1− p)x−r, x = r, r + 1, ...,∞,

where 0 < p < 1 is a parameter, a probability density function?

Answer: It is easy to check that f(x) ≥ 0. Now we show that
∞∑

x=r

f(x) is

equal to one.
∞∑

x=r

f(x) =
∞∑

x=r

(
x− 1
r − 1

)
pr (1− p)x−r

= pr
∞∑

x=r

(
x− 1
r − 1

)
(1− p)x−r

= pr (1− (1− p))−r

= pr p−r

= 1.

Computing the mean and variance of the negative binomial distribution
using definition is difficult. However, if we use the moment generating ap-
proach, then it is not so difficult. Hence in the next example, we determine
the moment generating function of this negative binomial distribution.

Example 5.14. What is the moment generating function of the random
variable X whose probability density function is

f(x) =
(

x− 1
r − 1

)
pr (1− p)x−r, x = r, r + 1, ...,∞?

Answer: The moment generating function of this negative binomial random
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variable is

M(t) =
∞∑

x=r

etx f(x)

=
∞∑

x=r

etx

(
x− 1
r − 1

)
pr (1− p)x−r

= pr
∞∑

x=r

et(x−r) etr

(
x− 1
r − 1

)
(1− p)x−r

= pr etr
∞∑

x=r

(
x− 1
r − 1

)
et(x−r) (1− p)x−r

= pr etr
∞∑

x=r

(
x− 1
r − 1

) [
et (1− p)

]x−r

= pr etr
[
1− (1− p)et

]−r

=
(

p et

1− (1− p)et

)r

, if t < −ln(1− p).

The following theorem can easily be proved.

Theorem 5.6. If X ∼ NBIN(r, p), then

E(X) =
r

p

V ar(X) =
r (1− p)

p2

M(t) =
(

p et

1− (1− p)et

)r

, if t < −ln(1− p).

Example 5.15. What is the probability that the fifth head is observed on
the 10th independent flip of a coin?

Answer: Let X denote the number of trials needed to observe 5th head.
Hence X has a negative binomial distribution with r = 5 and p = 1

2 .
We want to find

P (X = 10) = f(10)

=
(

9
4

)
p5 (1− p)5

=
(

9
4

)(
1
2

)10

=
63
512

.
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We close this section with the following comment. In the negative bino-
mial distribution the parameter r is a positive integer. One can generalize
the negative binomial distribution to allow noninteger values of the parame-
ter r. To do this let us write the probability density function of the negative
binomial distribution as

f(x) =
(

x− 1
r − 1

)
pr (1− p)x−r

=
(x− 1)!

(r − 1)! (x− r)!
pr (1− p)x−r

=
Γ(x)

Γ(r) Γ(x− r − 1)
pr (1− p)x−r, for x = r, r + 1, ...,∞,

where

Γ(z) =
∫ ∞

0
tz−1e−t dt

is the well known gamma function. The gamma function generalizes the
notion of factorial and it will be treated in the next chapter.

5.5. Hypergeometric Distribution

Consider a collection of n objects which can be classified into two classes,
say class 1 and class 2. Suppose that there are n1 objects in class 1 and n2

objects in class 2. A collection of r objects is selected from these n objects
at random and without replacement. We are interested in finding out the
probability that exactly x of these r objects are from class 1. If x of these r

objects are from class 1, then the remaining r−x objects must be from class
2. We can select x objects from class 1 in any one of

(n1
x

)
ways. Similarly,

the remaining r−x objects can be selected in
( n2
r−x

)
ways. Thus, the number

of ways one can select a subset of r objects from a set of n objects, such that



Class I Class II

Out of n1 objects
x will be 
selected

Out of n2
objects
r-x will
be
chosen

From 
n1+n2
objects 
select   r
objects 
such that x
objects are
of class I &
r-x are of
class II
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x number of objects will be from class 1 and r− x number of objects will be
from class 2, is given by

(n1
x

) ( n2
r−x

)
. Hence,

P (X = x) =

(n1
x

) ( n2
r−x

)
(n

r

) ,

where x ≤ r, x ≤ n1 and r − x ≤ n2.

Definition 5.5. A random variable X is said to have a hypergeometric
distribution if its probability density function is of the form

f(x) =

(n1
x

) ( n2
r−x

)
(n1+n2

r

) , x = 0, 1, 2, ..., r

where x ≤ n1 and r−x ≤ n2 with n1 and n2 being two positive integers. We
shall denote such a random variable by writing

X ∼ HY P (n1, n2, r).

Example 5.16. Suppose there are 3 defective items in a lot of 50 items. A
sample of size 10 is taken at random and without replacement. Let X denote
the number of defective items in the sample. What is the probability that
the sample contains at most one defective item?

Answer: Clearly, X ∼ HY P (3, 47, 10). Hence the probability that the
sample contains at most one defective item is

P (X ≤ 1) = P (X = 0) + P (X = 1)

=
(3
0

) (47
10

)
(50
10

) +
(3
1

) (47
9

)
(50
10

)

= 0.504 + 0.4

= 0.904.
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Example 5.17. A random sample of 5 students is drawn without replace-
ment from among 300 seniors, and each of these 5 seniors is asked if she/he
has tried a certain drug. Suppose 50% of the seniors actually have tried the
drug. What is the probability that two of the students interviewed have tried
the drug?

Answer: Let X denote the number of students interviewed who have tried
the drug. Hence the probability that two of the students interviewed have
tried the drug is

P (X = 2) =
(150

2

) (150
3

)
(300

5

)

= 0.3146.

Example 5.18. A radio supply house has 200 transistor radios, of which
3 are improperly soldered and 197 are properly soldered. The supply house
randomly draws 4 radios without replacement and sends them to a customer.
What is the probability that the supply house sends 2 improperly soldered
radios to its customer?

Answer: The probability that the supply house sends 2 improperly soldered
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radios to its customer is

P (X = 2) =
(3
2

) (197
2

)
(200

4

)

= 0.000895.

Theorem 5.7. If X ∼ HY P (n1, n2, r), then

E(X) = r
n1

n1 + n2

V ar(X) = r

(
n1

n1 + n2

) (
n2

n1 + n2

)(
n1 + n2 − r

n1 + n2 − 1

)
.

Proof: Let X ∼ HY P (n1, n2, r). We compute the mean and variance of
X by computing the first and the second factorial moments of the random
variable X. First, we compute the first factorial moment (which is same as
the expected value) of X. The expected value of X is given by

E(X) =
r∑

x=0

x f(x)

=
r∑

x=0

x

(n1
x

) ( n2
r−x

)
(n1+n2

r

)

= n1

r∑

x=1

(n1 − 1)!
(x− 1)! (n1 − x)!

( n2
r−x

)
(n1+n2

r

)

= n1

r∑

x=1

(n1−1
x−1

) ( n2
r−x

)

n1+n2
r

(n1+n2−1
r−1

)

= r
n1

n1 + n2

r−1∑

y=0

(n1−1
y

) ( n2
r−1−y

)
(n1+n2−1

r−1

) , where y = x− 1

= r
n1

n1 + n2
.

The last equality is obtained since

r−1∑

y=0

(n1−1
y

) ( n2
r−1−y

)
(n1+n2−1

r−1

) = 1.

Similarly, we find the second factorial moment of X to be

E(X(X − 1)) =
r(r − 1) n1 (n1 − 1)

(n1 + n2) (n1 + n2 − 1)
.
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Therefore, the variance of X is

V ar(X) = E(X2)− E(X)2

= E(X(X − 1)) + E(X)− E(X)2

=
r(r − 1) n1 (n1 − 1)

(n1 + n2) (n1 + n2 − 1)
+ r

n1

n1 + n2
−
(

r
n1

n1 + n2

)2

= r

(
n1

n1 + n2

) (
n2

n1 + n2

)(
n1 + n2 − r

n1 + n2 − 1

)
.

5.6. Poisson Distribution

In this section, we define an important discrete distribution which is
widely used for modeling many real life situations. First, we define this
distribution and then we present some of its important properties.

Definition 5.6. A random variable X is said to have a Poisson distribution
if its probability density function is given by

f(x) =
e−λ λx

x!
, x = 0, 1, 2, · · · , ∞,

where 0 < λ < ∞ is a parameter. We denote such a random variable by
X ∼ POI(λ).

The probability density function f is called the Poisson distribution after
Simeon D. Poisson (1781-1840).

Example 5.19. Is the real valued function defined by

f(x) =
e−λ λx

x!
, x = 0, 1, 2, · · · , ∞,

where 0 < λ < ∞ is a parameter, a probability density function?



Probability and Mathematical Statistics 133

Answer: It is easy to check f(x) ≥ 0. We show that
∞∑

x=0

f(x) is equal to

one.
∞∑

x=0

f(x) =
∞∑

x=0

e−λ λx

x!

= e−λ
∞∑

x=0

λx

x!

= e−λ eλ = 1.

Theorem 5.8. If X ∼ POI(λ), then

E(X) = λ

V ar(X) = λ

M(t) = eλ (et−1).

Proof: First, we find the moment generating function of X.

M(t) =
∞∑

x=0

etx f(x)

=
∞∑

x=0

etx e−λ λx

x!

= e−λ
∞∑

x=0

etx λ
x

x!

= e−λ
∞∑

x=0

(etλ)x

x!

= e−λ eλet

= eλ (et−1).

Thus,
M ′(t) = λ et eλ (et−1),

and
E(X) = M ′(0) = λ.

Similarly,
M ′′(t) = λ et eλ (et−1) +

(
λ et
)2

eλ (et−1).

Hence
M ′′(0) = E(X2) = λ2 + λ.
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Therefore

V ar(X) = E(X2)− ( E(X) )2 = λ2 + λ− λ2 = λ.

This completes the proof.

Example 5.20. A random variable X has a Poisson distribution with a
mean of 3. What is the probability that X is bounded by 1 and 3, that is,
P (1 ≤ X ≤ 3)?

Answer:
µX = 3 = λ

f(x) =
λx e−λ

x!
Hence

f(x) =
3x e−3

x!
, x = 0, 1, 2, ...

Therefore
P (1 ≤ X ≤ 3) = f(1) + f(2) + f(3)

= 3 e−3 +
9
2

e−3 +
27
6

e−3

= 12 e−3.

Example 5.21. The number of traffic accidents per week in a small city
has a Poisson distribution with mean equal to 3. What is the probability of
exactly 2 accidents occur in 2 weeks?

Answer: The mean traffic accident is 3. Thus, the mean accidents in two
weeks are

λ = (3) (2) = 6.
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Since

f(x) =
λx e−λ

x!
we get

f(2) =
62 e−6

2!
= 18 e−6.

Example 5.22. Let X have a Poisson distribution with parameter λ = 1.
What is the probability that X ≥ 2 given that X ≤ 4?

Answer:
P (X ≥ 2 / X ≤ 4) =

P (2 ≤ X ≤ 4)
P (X ≤ 4)

.

P (2 ≤ X ≤ 4) =
4∑

x=2

λx e−λ

x!

=
1
e

4∑

x=2

1
x!

=
17
24 e

.

Similarly

P (X ≤ 4) =
1
e

4∑

x=0

1
x!

=
65
24 e

.

Therefore, we have

P (X ≥ 2 / X ≤ 4) =
17
65

.

Example 5.23. If the moment generating function of a random variable X

is M(t) = e4.6 (et−1), then what are the mean and variance of X? What is
the probability that X is between 3 and 6, that is P (3 < X < 6)?
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Answer: Since the moment generating function of X is given by

M(t) = e4.6 (et−1)

we conclude that X ∼ POI(λ) with λ = 4.6. Thus, by Theorem 5.8, we get

E(X) = 4.6 = V ar(X).

P (3 < X < 6) = f(4) + f(5)

= F (5)− F (3)

= 0.686− 0.326

= 0.36.

5.7. Riemann Zeta Distribution

The zeta distribution was used by the Italian economist Vilfredo Pareto
(1848-1923) to study the distribution of family incomes of a given country.

Definition 5.7. A random variable X is said to have Riemann zeta distri-
bution if its probability density function is of the form

f(x) =
1

ζ(α+ 1)
x−(α+1), x = 1, 2, 3, ...,∞

where α > 0 is a parameter and

ζ(s) = 1 +
(

1
2

)s

+
(

1
3

)s

+
(

1
4

)s

+ · · · +
(

1
x

)s

+ · · ·

is the well known the Riemann zeta function. A random variable having a
Riemann zeta distribution with parameter α will be denoted by X ∼ RIZ(α).

The following figures illustrate the Riemann zeta distribution for the case
α = 2 and α = 1.
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The following theorem is easy to prove and we leave its proof to the reader.

Theorem 5.9. If X ∼ RIZ(α), then

E(X) =
ζ(α)
ζ(α+ 1)

V ar(X) =
ζ(α− 1)ζ(α+ 1)− (ζ(α))2

(ζ(α+ 1))2
.

Remark 5.1. If 0 < α ≤ 1, then ζ(α) = ∞. Hence if X ∼ RIZ(α) and the
parameter α ≤ 1, then the variance of X is infinite.

5.8. Review Exercises

1. What is the probability of getting exactly 3 heads in 5 flips of a fair coin?

2. On six successive flips of a fair coin, what is the probability of observing
3 heads and 3 tails?

3. What is the probability that in 3 rolls of a pair of six-sided dice, exactly
one total of 7 is rolled?

4. What is the probability of getting exactly four “sixes” when a die is rolled
7 times?

5. In a family of 4 children, what is the probability that there will be exactly
two boys?

6. If a fair coin is tossed 4 times, what is the probability of getting at least
two heads?

7. In Louisville the probability that a thunderstorm will occur on any day
during the spring is 0.05. Assuming independence, what is the probability
that the first thunderstorm occurs on April 5? (Assume spring begins on
March 1.)

8. A ball is drawn from an urn containing 3 white and 3 black balls. After
the ball is drawn, it is then replaced and another ball is drawn. This goes on
indefinitely. What is the probability that, of the first 4 balls drawn, exactly
2 are white?

9. What is the probability that a person flipping a fair coin requires four
tosses to get a head?

10. Assume that hitting oil at one drilling location is independent of another,
and that, in a particular region, the probability of success at any individual
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location is 0.3. Suppose the drilling company believes that a venture will
be profitable if the number of wells drilled until the second success occurs
is less than or equal to 7. What is the probability that the venture will be
profitable?

11. Suppose an experiment consists of tossing a fair coin until three heads
occur. What is the probability that the experiment ends after exactly six
flips of the coin with a head on the fifth toss as well as on the sixth?

12. Customers at Fred’s Cafe wins a $100 prize if their cash register re-
ceipts show a star on each of the five consecutive days Monday, Tuesday, ...,
Friday in any one week. The cash register is programmed to print stars on
a randomly selected 10% of the receipts. If Mark eats at Fred’s Cafe once
each day for four consecutive weeks, and if the appearance of the stars is
an independent process, what is the probability that Mark will win at least
$100?

13. If a fair coin is tossed repeatedly, what is the probability that the third
head occurs on the nth toss?

14. Suppose 30 percent of all electrical fuses manufactured by a certain
company fail to meet municipal building standards. What is the probability
that in a random sample of 10 fuses, exactly 3 will fail to meet municipal
building standards?

15. A bin of 10 light bulbs contains 4 that are defective. If 3 bulbs are chosen
without replacement from the bin, what is the probability that exactly k of
the bulbs in the sample are defective?

16. Let X denote the number of independent rolls of a fair die required to
obtain the first “3”. What is P (X ≥ 6)?

17. The number of automobiles crossing a certain intersection during any
time interval of length t minutes between 3:00 P.M. and 4:00 P.M. has a
Poisson distribution with mean t. Let W be time elapsed after 3:00 P.M.
before the first automobile crosses the intersection. What is the probability
that W is less than 2 minutes?

18. In rolling one die repeatedly, what is the probability of getting the third
six on the xth roll?

19. A coin is tossed 6 times. What is the probability that the number of
heads in the first 3 throws is the same as the number in the last 3 throws?
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20. One hundred pennies are being distributed independently and at random
into 30 boxes, labeled 1, 2, ..., 30. What is the probability that there are
exactly 3 pennies in box number 1?

21. The density function of a certain random variable is

f(x) =

{(22
4x

)
(0.2)4x (0.8)22−4x if x = 0, 1

4 , 2
4 , · · · , 22

4

0 otherwise.

What is the expected value of X2 ?

22. If MX(t) = k (2 + 3et)100, what is the value of k? What is the variance
of the random variable X?

23. If MX(t) = k
(

et

7−5et

)3
, what is the value of k? What is the variance of

the random variable X?

24. If for a Poisson distribution 2f(0) + f(2) = 2f(1), what is the mean of
the distribution?

25. The number of hits, X, per baseball game, has a Poisson distribution.
If the probability of a no-hit game is 1

3 , what is the probability of having 2
or more hits in specified game?

26. Suppose X has a Poisson distribution with a standard deviation of 4.
What is the conditional probability that X is exactly 1 given that X ≥ 1 ?

27. A die is loaded in such a way that the probability of the face with j dots
turning up is proportional to j2 for j = 1, 2, 3, 4, 5, 6. What is the probability
of rolling at most three sixes in 5 independent casts of this die?

28. A die is loaded in such a way that the probability of the face with j dots
turning up is proportional to j2 for j = 1, 2, 3, 4, 5, 6. What is the probability
of getting the third six on the 7th roll of this loaded die?
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Chapter 6

SOME SPECIAL
CONTINUOUS

DISTRIBUTIONS

In this chapter, we study some well known continuous probability density
functions. We want to study them because they arise in many applications.
We begin with the simplest probability density function.

6.1. Uniform Distribution

Let the random variable X denote the outcome when a point is selected
at random from an interval [a, b]. We want to find the probability of the
event X ≤ x, that is we would like to determine the probability that the
point selected from [a, b] would be less than or equal to x. To compute this
probability, we need a probability measure µ that satisfies the three axioms of
Kolmogorov (namely nonnegativity, normalization and countable additivity).
For continuous variables, the events are interval or union of intervals. The
length of the interval when normalized satisfies all the three axioms and thus
it can be used as a probability measure for one-dimensional random variables.
Hence

P (X ≤ x) =
length of [a, x]
length of [a, b]

.

Thus, the cumulative distribution function F is

F (x) = P (X ≤ x) =
x− a

b− a
, a ≤ x ≤ b,

where a and b are any two real constants with a < b. To determine the
probability density function from cumulative density function, we calculate
the derivative of F (x). Hence

f(x) =
d

dx
F (x) =

1
b− a

, a ≤ x ≤ b.
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Definition 6.1. A random variable X is said to be uniform on the interval
[a, b] if its probability density function is of the form

f(x) =
1

b− a
, a ≤ x ≤ b,

where a and b are constants. We denote a random variable X with the
uniform distribution on the interval [a, b] as X ∼ UNIF (a, b).

The uniform distribution provides a probability model for selecting points
at random from an interval [a, b]. An important application of uniform dis-
tribution lies in random number generation. The following theorem gives
the mean, variance and moment generating function of a uniform random
variable.

Theorem 6.1. If X is uniform on the interval [a, b] then the mean, variance
and moment generating function of X are given by

E(X) =
b + a

2

V ar(X) =
(b− a)2

12

M(t) =






1 if t = 0

etb−eta

t (b−a) , if t += 0

Proof:

E(X) =
∫ b

a
x f(x) dx

=
∫ b

a
x

1
b− a

dx

=
1

b− a

[
x2

2

]b

a

=
1
2

(b + a).
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E(X2) =
∫ b

a
x2 f(x) dx

=
∫ b

a
x2 1

b− a
dx

=
1

b− a

[
x3

3

]b

a

=
1

b− a

b3 − a3

3

=
1

(b− a)
(b− a) (b2 + ba + a2)

3

=
1
3

(b2 + ba + a2).

Hence, the variance of X is given by

V ar(X) = E(X2)− ( E(X) )2

=
1
3

(b2 + ba + a2)− (b + a)2

4

=
1
12
[
4b2 + 4ba + 4a2 − 3a2 − 3b2 − 6ba

]

=
1
12
[
b2 − 2ba + a2

]

=
1
12

(b− a)2 .

Next, we compute the moment generating function of X. First, we handle
the case t += 0. Assume t += 0. Hence

M(t) = E
(
etX
)

=
∫ b

a
etx 1

b− a
dx

=
1

b− a

[
etx

t

]b

a

=
etb − eta

t (b− a)
.

If t = 0, we have know that M(0) = 1, hence we get

M(t) =






1 if t = 0

etb−eta

t (b−a) , if t += 0
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and this completes the proof.

Example 6.1. Suppose Y ∼ UNIF (0, 1) and Y = 1
4 X2. What is the

probability density function of X?

Answer: We shall find the probability density function of X through the
cumulative distribution function of Y . The cumulative distribution function
of X is given by

F (x) = P (X ≤ x)

= P
(
X2 ≤ x2

)

= P

(
1
4

X2 ≤ 1
4

x2

)

= P

(
Y ≤ x2

4

)

=
∫ x2

4

0
f(y) dy

=
∫ x2

4

0
dy

=
x2

4
.

Thus

f(x) =
d

dx
F (x) =

x

2
.

Hence the probability density function of X is given by

f(x) =

{ x
2 for 0 ≤ x ≤ 2

0 otherwise.
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Example 6.2. If X has a uniform distribution on the interval from 0 to 10,
then what is P

(
X + 10

X ≥ 7
)
?

Answer: Since X ∼ UNIF (0, 10), the probability density function of X is
f(x) = 1

10 for 0 ≤ x ≤ 10. Hence

P

(
X +

10
X
≥ 7
)

= P
(
X2 + 10 ≥ 7 X

)

= P
(
X2 − 7 X + 10 ≥ 0

)

= P ((X − 5) (X − 2) ≥ 0)

= P (X ≤ 2 or X ≥ 5)

= 1− P (2 ≤ X ≤ 5)

= 1−
∫ 5

2
f(x) dx

= 1−
∫ 5

2

1
10

dx

= 1− 3
10

=
7
10

.

Example 6.3. If X is uniform on the interval from 0 to 3, what is the
probability that the quadratic equation 4t2 + 4tX + X + 2 = 0 has real
solutions?

Answer: Since X ∼ UNIF (0, 3), the probability density function of X is

f(x) =

{ 1
3 0 ≤ x ≤ 3

0 otherwise.
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The quadratic equation 4t2 + 4tX + X + 2 = 0 has real solution if the
discriminant of this equation is positive. That is

16X2 − 16(X + 2) ≥ 0,

which is
X2 −X − 2 ≥ 0.

From this, we get
(X − 2) (X + 1) ≥ 0.

The probability that the quadratic equation 4t2 + 4tX + X + 2 = 0 has real
roots is equivalent to

P ( (X − 2) (X + 1) ≥ 0 ) = P (X ≤ −1 or X ≥ 2)

= P (X ≤ −1) + P (X ≥ 2)

=
∫ −1

−∞
f(x) dx +

∫ 3

2
f(x) dx

= 0 +
∫ 3

2

1
3

dx

=
1
3

= 0.3333.

Theorem 6.2. If X is a continuous random variable with a strictly increasing
cumulative distribution function F (x), then the random variable Y , defined
by

Y = F (X)

has the uniform distribution on the interval [0, 1].

Proof: Since F is strictly increasing, the inverse F−1(x) of F (x) exists. We
want to show that the probability density function g(y) of Y is g(y) = 1.
First, we find the cumulative distribution G(y) function of Y .

G(y) = P (Y ≤ y)

= P (F (X) ≤ y)

= P
(
X ≤ F−1(y)

)

= F
(
F−1(y)

)

= y.
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Hence the probability density function of Y is given by

g(y) =
d

dy
G(y) =

d

dy
y = 1.

The following problem can be solved using this theorem but we solve it
without this theorem.

Example 6.4. If the probability density function of X is

f(x) =
e−x

(1 + e−x)2
, −∞ < x <∞,

then what is the probability density function of Y = 1
1+e−X ?

Answer: The cumulative distribution function of Y is given by

G(y) = P (Y ≤ y)

= P

(
1

1 + e−X
≤ y

)

= P

(
1 + e−X ≥ 1

y

)

= P

(
e−X ≥ 1− y

y

)

= P

(
−X ≥ ln

1− y

y

)

= P

(
X ≤ − ln

1− y

y

)

=
∫ − ln 1−y

y

−∞

e−x

(1 + e−x)2
dx

=
[

1
1 + e−x

]− ln 1−y
y

−∞

=
1

1 + 1−y
y

= y.

Hence, the probability density function of Y is given by

f(y) =

{ 1 if 0 < y < 1

0 otherwise.
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Example 6.5. A box to be constructed so that its height is 10 inches and
its base is X inches by X inches. If X has a uniform distribution over the
interval (2, 8), then what is the expected volume of the box in cubic inches?

Answer: Since X ∼ UNIF (2, 8),

f(x) =
1

8− 2
=

1
6

on (2, 8).

The volume V of the box is
V = 10 X2.

Hence

E(V ) = E
(
10X2
)

= 10 E
(
X2
)

= 10
∫ 8

2
x2 1

6
dx

=
10
6

[
x3

3

]8

2

=
10
18
[
83 − 23

]
= (5) (8) (7) = 280 cubic inches.

Example 6.6. Two numbers are chosen independently and at random from
the interval (0, 1). What is the probability that the two numbers differs by
more than 1

2?

Answer: See figure below:

Choose x from the x-axis between 0 and 1, and choose y from the y-axis
between 0 and 1. The probability that the two numbers differ by more than
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1
2 is equal to the area of the shaded region. Thus

P

(
|X − Y | >

1
2

)
=

1
8 + 1

8

1
=

1
4
.

6.2. Gamma Distribution

The gamma distribution involves the notion of gamma function. First,
we develop the notion of gamma function and study some of its well known
properties. The gamma function, Γ(z), is a generalization of the notion of
factorial. The gamma function is defined as

Γ(z) :=
∫ ∞

0
xz−1 e−x dx,

where z is positive real number (that is, z > 0). The condition z > 0 is
assumed for the convergence of the integral. Although the integral does not
converge for z < 0, it can be shown by using an alternative definition of
gamma function that it is defined for all z ∈ IR \ {0,−1,−2,−3, ...}.

The integral on the right side of the above expression is called Euler’s
second integral, after the Swiss mathematician Leonhard Euler (1707-1783).
The graph of the gamma function is shown below. Observe that the zero and
negative integers correspond to vertical asymptotes of the graph of gamma
function.

Lemma 6.1. Γ(1) = 1.

Proof:
Γ(1) =

∫ ∞

0
x0 e−x dx =

[
−e−x
]∞
0

= 1.

Lemma 6.2. The gamma function Γ(z) satisfies the functional equation
Γ(z) = (z − 1) Γ(z − 1) for all real number z > 1.
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Proof: Let z be a real number such that z > 1, and consider

Γ(z) =
∫ ∞

0
xz−1 e−x dx

=
[
−xz−1 e−x

]∞
0

+
∫ ∞

0
(z − 1) xz−2 e−x dx

= (z − 1)
∫ ∞

0
xz−2 e−x dx

= (z − 1) Γ(z − 1).

Although, we have proved this lemma for all real z > 1, actually this
lemma holds also for all real number z ∈ IR \ {1, 0,−1,−2,−3, ...}.

Lemma 6.3. Γ
(

1
2

)
=
√
π.

Proof: We want to show that

Γ
(

1
2

)
=
∫ ∞

0

e−x

√
x

dx

is equal to
√
π. We substitute y =

√
x, hence the above integral becomes

Γ
(

1
2

)
=
∫ ∞

0

e−x

√
x

dx

= 2
∫ ∞

0
e−y2

dy, where y =
√

x.

Hence
Γ
(

1
2

)
= 2
∫ ∞

0
e−u2

du

and also
Γ
(

1
2

)
= 2
∫ ∞

0
e−v2

dv.

Multiplying the above two expressions, we get
(
Γ
(

1
2

))2

= 4
∫ ∞

0

∫ ∞

0
e−(u2+v2) du dv.

Now we change the integral into polar form by the transformation u =
r cos(θ) and v = r sin(θ). The Jacobian of the transformation is

J(r, θ) = det




∂u
∂r

∂u
∂θ

∂v
∂r

∂v
∂θ





= det

(
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)

= r cos2(θ) + r sin2(θ)

= r.
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Hence, we get

(
Γ
(

1
2

))2

= 4
∫ π

2

0

∫ ∞

0
e−r2

J(r, θ) dr dθ

= 4
∫ π

2

0

∫ ∞

0
e−r2

r dr dθ

= 2
∫ π

2

0

∫ ∞

0
e−r2

2r dr dθ

= 2
∫ π

2

0

[∫ ∞

0
e−r2

dr2

]
dθ

= 2
∫ π

2

0
Γ(1) dθ

= π.

Therefore, we get

Γ
(

1
2

)
=
√
π.

Lemma 6.4. Γ
(
− 1

2

)
= −2

√
π.

Proof: By Lemma 6.2, we get

Γ (z) = (z − 1) Γ (z − 1)

for all z ∈ IR \ {1, 0,−1,−2,−3, ...}. Letting z = 1
2 , we get

Γ
(

1
2

)
=
(

1
2
− 1
)
Γ
(

1
2
− 1
)

which is

Γ
(
−1

2

)
= −2Γ

(
1
2

)
= −2

√
π.

Example 6.7. Evaluate Γ
(

5
2

)
.

Answer:

Γ
(

5
2

)
=

3
2

1
2
Γ
(

1
2

)
=

3
4
√
π.

Example 6.8. Evaluate Γ
(
− 7

2

)
.
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Answer: Consider

Γ
(
−1

2

)
= −3

2
Γ
(
−3

2

)

=
(
−3

2

) (
−5

2

)
Γ
(
−5

2

)

=
(
−3

2

) (
−5

2

) (
−7

2

)
Γ
(
−7

2

)
.

Hence
Γ
(
−7

2

)
=
(
−2

3

) (
−2

5

) (
−2

7

)
Γ
(
−1

2

)
=

16
105

√
π.

Example 6.9. Evaluate Γ (7.8).

Answer:
Γ (7.8) = (6.8) (5.8) (4.8) (3.8) (2.8) (1.8) Γ (1.8)

= (3625.7) Γ (1.8)

= (3625.7) (0.9314) = 3376.9.

Here we have used the gamma table to find Γ (1.8) to be 0.9314.

Example 6.10. If n is a natural number, then Γ(n + 1) = n!.

Answer:
Γ(n + 1) = nΓ(n)

= n (n− 1) Γ(n− 1)

= n (n− 1) (n− 2) Γ(n− 2)

= · · · · · ·
= n (n− 1) (n− 2) · · · (1) Γ(1)

= n!

Now we are ready to define the gamma distribution.

Definition 6.2. A continuous random variable X is said to have a gamma
distribution if its probability density function is given by

f(x) =






1
Γ(α) θα xα−1 e−

x
θ if 0 < x <∞

0 otherwise,

where α > 0 and θ > 0. We denote a random variable with gamma distri-
bution as X ∼ GAM(θ, α). The following diagram shows the graph of the
gamma density for various values of values of the parameters θ and α.
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The following theorem gives the expected value, the variance, and the
moment generating function of the gamma random variable

Theorem 6.3. If X ∼ GAM(θ, α), then

E(X) = θ α

V ar(X) = θ2 α

M(t) =
(

1
1− θ t

)α
, if t <

1
θ
.

Proof: First, we derive the moment generating function of X and then we
compute the mean and variance of it. The moment generating function

M(t) = E
(
etX
)

=
∫ ∞

0

1
Γ(α) θα

xα−1 e−
x
θ etx dx

=
∫ ∞

0

1
Γ(α) θα

xα−1 e−
1
θ (1−θt)x dx

=
∫ ∞

0

1
Γ(α) θα

θα

(1− θt)α yα−1 e−y dy, where y =
1
θ

(1− θt)x

=
1

(1− θt)α

∫ ∞

0

1
Γ(α)

yα−1 e−y dy

=
1

(1− θt)α , since the integrand is GAM(1, α).
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The first derivative of the moment generating function is

M ′(t) =
d

dt
(1− θt)−α

= (−α) (1− θt)−α−1 (−θ)
= α θ (1− θt)−(α+1).

Hence from above, we find the expected value of X to be

E(X) = M ′(0) = α θ.

Similarly,

M ′′(t) =
d

dt

(
α θ (1− θt)−(α+1)

)

= α θ (α+ 1) θ (1− θt)−(α+2)

= α (α+ 1) θ2 (1− θt)−(α+2).

Thus, the variance of X is

V ar(X) = M ′′(0)− (M ′(0))2

= α (α+ 1) θ2 − α2 θ2

= α θ2

and proof of the theorem is now complete

In figure below the graphs of moment generating function for various
values of the parameters are illustrated.

Example 6.11. Let X have the density function

f(x) =






1
Γ(α) θα xα−1 e−

x
θ if 0 < x <∞

0 otherwise,
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where α > 0 and θ > 0. If α = 4, what is the mean of 1
X3 ?

Answer:

E
(
X−3
)

=
∫ ∞

0

1
x3

f(x) dx

=
∫ ∞

0

1
x3

1
Γ(4) θ4

x3 e−
x
θ dx

=
1

3! θ4

∫ ∞

0
e−

x
θ dx

=
1

3! θ3

∫ ∞

0

1
θ

e−
x
θ dx

=
1

3! θ3
since the integrand is GAM(θ, 1).

Definition 6.3. A continuous random variable is said to be an exponential
random variable with parameter θ if its probability density function is of the
form

f(x) =






1
θ e−

x
θ if x > 0

0 otherwise,

where θ > 0. If a random variable X has an exponential density function
with parameter θ, then we denote it by writing X ∼ EXP (θ).

An exponential distribution is a special case of the gamma distribution.
If the parameter α = 1, then the gamma distribution reduces to the expo-
nential distribution. Hence most of the information about an exponential
distribution can be obtained from the gamma distribution.

Example 6.12. What is the cumulative density function of a random vari-
able which has an exponential distribution with variance 25?
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Answer: Since an exponential distribution is a special case of the gamma
distribution with α = 1, from Theorem 6.3, we get V ar(X) = θ2. But this
is given to be 25. Thus, θ2 = 25 or θ = 5. Hence, the probability density
function of X is

F (x) =
∫ x

0
f(t) dt

=
∫ x

0

1
5

e−
t
5 dt

=
1
5

[
−5 e−

t
5

]x
0

= 1− e−
x
5 .

Example 6.13. If the random variable X has a gamma distribution with
parameters α = 1 and θ = 1, then what is the probability that X is between
its mean and median?

Answer: Since X ∼ GAM(1, 1), the probability density function of X is

f(x) =

{
e−x if x > 0

0 otherwise.

Hence, the median q of X can be calculated from

1
2

=
∫ q

0
e−x dx

=
[
−e−x
]q
0

= 1− e−q.

Hence
1
2

= 1− e−q
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and from this, we get
q = ln 2.

The mean of X can be found from the Theorem 6.3.

E(X) = α θ = 1.

Hence the mean of X is 1 and the median of X is ln 2. Thus

P (ln 2 ≤ X ≤ 1) =
∫ 1

ln 2
e−x dx

=
[
−e−x
]1
ln 2

= e− ln 2 − 1
e

=
1
2
− 1

e

=
e− 2
2 e

.

Example 6.14. If the random variable X has a gamma distribution with
parameters α = 1 and θ = 2, then what is the probability density function
of the random variable Y = eX?

Answer: First, we calculate the cumulative distribution function G(y) of Y .

G(y) = P ( Y ≤ y )

= P
(
eX ≤ y

)

= P ( X ≤ ln y )

=
∫ ln y

0

1
2

e−
x
2 dx

=
1
2
[
−2 e−

x
2
]ln y

0

= 1− 1
e

1
2 ln y

= 1− 1
√

y
.

Hence, the probability density function of Y is given by

g(y) =
d

dy
G(y) =

d

dy

(
1− 1

√
y

)
=

1
2y
√

y
.
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Thus, if X ∼ GAM(1, 2), then probability density function of eX is

f(x) =

{ 1
2x

√
x

if 1 ≤ x <∞

0 otherwise.

Definition 6.4. A continuous random variable X is said to have a chi-square
distribution with r degrees of freedom if its probability density function is of
the form

f(x) =






1

Γ( r
2 ) 2

r
2

x
r
2−1 e−

x
2 if 0 < x <∞

0 otherwise,

where r > 0. If X has a chi-square distribution, then we denote it by writing
X ∼ χ2(r).

The gamma distribution reduces to the chi-square distribution if α = r
2 and

θ = 2. Thus, the chi-square distribution is a special case of the gamma
distribution. Further, if r → ∞, then the chi-square distribution tends to
the normal distribution.
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The chi-square distribution was originated in the works of British Statis-
tician Karl Pearson (1857-1936) but it was originally discovered by German
physicist F. R. Helmert (1843-1917).

Example 6.15. If X ∼ GAM(1, 1), then what is the probability density
function of the random variable 2X?

Answer: We will use the moment generating method to find the distribution
of 2X. The moment generating function of a gamma random variable is given
by (see Theorem 6.3)

M(t) = (1− θ t)−α , if t <
1
θ
.

Since X ∼ GAM(1, 1), the moment generating function of X is given by

MX(t) =
1

1− t
, t < 1.

Hence, the moment generating function of 2X is

M2X(t) = MX(2t)

=
1

1− 2t

=
1

(1− 2t) 2
2

= MGF of χ2(2).

Hence, if X is an exponential with parameter 1, then 2X is chi-square with
2 degrees of freedom.

Example 6.16. If X ∼ χ2(5), then what is the probability that X is between
1.145 and 12.83?

Answer: The probability of X between 1.145 and 12.83 can be calculated
from the following:

P (1.145 ≤ X ≤ 12.83)

= P (X ≤ 12.83)− P (X ≤ 1.145)

=
∫ 12.83

0
f(x) dx−

∫ 1.145

0
f(x) dx

=
∫ 12.83

0

1
Γ
(

5
2

)
2 5

2
x

5
2−1 e−

x
2 dx−

∫ 1.145

0

1
Γ
(

5
2

)
2 5

2
x

5
2−1 e−

x
2 dx

= 0.975− 0.050 (from χ2 table)

= 0.925.
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These integrals are hard to evaluate and so their values are taken from the
chi-square table.

Example 6.17. If X ∼ χ2(7), then what are values of the constants a and
b such that P (a < X < b) = 0.95?

Answer: Since

0.95 = P (a < X < b) = P (X < b)− P (X < a),

we get
P (X < b) = 0.95 + P (X < a).

We choose a = 1.690, so that

P (X < 1.690) = 0.025.

From this, we get

P (X < b) = 0.95 + 0.025 = 0.975

Thus, from the chi-square table, we get b = 16.01.

Definition 6.5. A continuous random variable X is said to have a n-Erlang
distribution if its probability density function is of the form

f(x) =





λe−λx (λx)n−1

(n−1)! , if 0 < x <∞

0 otherwise,

where λ > 0 is a parameter.
The gamma distribution reduces to n-Erlang distribution if α = n, where

n is a positive integer, and θ = 1
λ . The gamma distribution can be generalized

to include the Weibull distribution. We call this generalized distribution the
unified distribution. The form of this distribution is the following:

f(x) =






α
θαψΓ(αψ+1)

xα−1 e
−x−(αψ−α−1)

θ , if 0 < x <∞

0 otherwise,

where θ > 0, α > 0, and ψ ∈ {0, 1} are parameters.
If ψ = 0, the unified distribution reduces

f(x) =






α
θ xα−1e−

xα

θ , if 0 < x <∞

0 otherwise
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which is known as the Weibull distribution. For α = 1, the Weibull distribu-
tion becomes an exponential distribution. The Weibull distribution provides
probabilistic models for life-length data of components or systems. The mean
and variance of the Weibull distribution are given by

E(X) = θ
1
α Γ
(

1 +
1
α

)
,

V ar(X) = θ
2
α

{
Γ
(

1 +
2
α

)
−
[(

1 +
1
α

)]2}
.

From this Weibull distribution, one can get the Rayleigh distribution by
taking θ = 2σ2 and α = 2. The Rayleigh distribution is given by

f(x) =






x
σ2 e−

x2

2σ2 , if 0 < x <∞

0 otherwise.

If ψ = 1, the unified distribution reduces to the gamma distribution.

6.3. Beta Distribution

The beta distribution is one of the basic distributions in statistics. It
has many applications in classical as well as Bayesian statistics. It is a ver-
satile distribution and as such it is used in modeling the behavior of random
variables that are positive but bounded in possible values. Proportions and
percentages fall in this category.

The beta distribution involves the notion of beta function. First we
explain the notion of the beta integral and some of its simple properties. Let
α and β be any two positive real numbers. The beta function B(α, β) is
defined as

B(α, β) =
∫ 1

0
xα−1(1− x)β−1dx.

First, we prove a theorem that establishes the connection between the
beta function and the gamma function.

Theorem 6.4. Let α and β be any two positive real numbers. Then

B(α, β) =
Γ(α)Γ(β)
Γ(α+ β)

,

where
Γ(z) =

∫ ∞

0
xz−1e−x dx
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is the gamma function.

Proof: We prove this theorem by computing

Γ(α) Γ(β) =
(∫ ∞

0
xα−1e−xdx

)(∫ ∞

0
yβ−1e−ydy

)

=
(∫ ∞

0
u2α−2e−u2

2udu

)(∫ ∞

0
v2β−2e−v2

2vdv

)

= 4
∫ ∞

0

∫ ∞

0
u2α−1v2β−1e−(u2+v2)dudv

= 4
∫ π

2

0

∫ ∞

0
r2α+2β−2(cos θ)2α−1(sin θ)2β−1e−r2

rdrdθ

=
(∫ ∞

0
(r2)α+β−1e−r2

dr2

)(
2
∫ π

2

0
(cos θ)2α−1(sin θ)2β−1dθ

)

= Γ(α+ β)

(
2
∫ π

2

0
(cos θ)2α−1(sin θ)2β−1dθ

)

= Γ(α+ β)
∫ 1

0
tα−1(1− t)β−1dt

= Γ(α+ β) B(α, β).

The second line in the above integral is obtained by substituting x = u2 and
y = v2. Similarly, the fourth and seventh lines are obtained by substituting
u = r cos θ, v = r sin θ, and t = cos2 θ, respectively. This proves the theorem.

The following two corollaries are consequences of the last theorem.

Corollary 6.1. For every positive α and β, the beta function is symmetric,
that is

B(α, β) = B(β, α).

Corollary 6.2. For every positive α and β, the beta function can be written
as

B(α, β) = 2
∫ π

2

0
(cos θ)2α−1(sin θ)2β−1dθ.

The following corollary is obtained substituting s = t
1−t in the definition

of the beta function.

Corollary 6.3. For every positive α and β, the beta function can be ex-
pressed as

B(α, β) =
∫ ∞

0

sα−1

(1 + s)α+β
ds.
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Using Theorem 6.4 and the property of gamma function, we have the
following corollary.

Corollary 6.4. For every positive real number β and every positive integer
α, the beta function reduces to

B(α, β) =
(α− 1)!

(α− 1 + β)(α− 2 + β) · · · (1 + β)β
.

Corollary 6.5. For every pair of positive integers α and β, the beta function
satisfies the following recursive relation

B(α, β) =
(α− 1)(β − 1)

(α+ β − 1)(α+ β − 2)
B(α− 1, β − 1).

Definition 6.6. A random variable X is said to have the beta density
function if its probability density function is of the form

f(x) =

{ 1
B(α,β) xα−1 (1− x)β−1, if 0 < x < 1

0 otherwise

for every positive α and β. If X has a beta distribution, then we symbolically
denote this by writing X ∼ BETA(α, β).

The following figure illustrates the graph of the beta distribution for
various values of α and β.

The beta distribution reduces to the uniform distribution over (0, 1) if
α = 1 = β. The following theorem gives the mean and variance of the beta
distribution.
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Theorem 6.5. If X ∼ BETA(α, β),

E(X) =
α

α+ β

V ar(X) =
αβ

(α+ β)2 (α+ β + 1)
.

Proof: The expected value of X is given by

E(X) =
∫ 1

0
x f(x) dx

=
1

B(α, β)

∫ 1

0
xα (1− x)β−1 dx

=
B(α+ 1, β)

B(α, β)

=
Γ(α+ 1)Γ(β)
Γ(α+ β + 1)

Γ(α+ β)
Γ(α) Γ(β)

=
αΓ(α) Γ(β)

(α+ β) Γ(α+ β)
Γ(α+ β)
Γ(α) Γ(β)

=
α

α+ β
.

Similarly, we can show that

E
(
X2
)

=
α (α+ 1)

(α+ β + 1) (α+ β)
.

Therefore

V ar(X) = E
(
X2
)
− E(X) =

αβ

(α+ β)2 (α+ β + 1)

and the proof of the theorem is now complete.

Example 6.18. The percentage of impurities per batch in a certain chemical
product is a random variable X that follows the beta distribution given by

f(x) =

{
60 x3 (1− x)2 for 0 < x < 1

0 otherwise.

What is the probability that a randomly selected batch will have more than
25% impurities?
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Proof: The probability that a randomly selected batch will have more than
25% impurities is given by

P (X ≥ 0.25) =
∫ 1

0.25
60 x3 (1− x)2 dx

= 60
∫ 1

0.25

(
x3 − 2x4 + x5

)
dx

= 60
[
x4

4
− 2x5

5
+

x6

6

]1

0.25

= 60
657

40960
= 0.9624.

Example 6.19. The proportion of time per day that all checkout counters
in a supermarket are busy follows a distribution

f(x) =

{
k x2 (1− x)9 for 0 < x < 1

0 otherwise.

What is the value of the constant k so that f(x) is a valid probability density
function?

Proof: Using the definition of the beta function, we get that

∫ 1

0
x2 (1− x)9 dx = B(3, 10).

Hence by Theorem 6.4, we obtain

B(3, 10) =
Γ(3) Γ(10)
Γ(13)

=
1

660
.

Hence k should be equal to 660.
The beta distribution can be generalized to any bounded interval [a, b].

This generalized distribution is called the generalized beta distribution. If
a random variable X has this generalized beta distribution we denote it by
writing X ∼ GBETA(α, β, a, b). The probability density of the generalized
beta distribution is given by

f(x) =






1
B(α,β)

(x−a)α−1 (b−x)β−1

(b−a)α+β−1 if a < x < b

0 otherwise
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where α, β, a > 0.

If X ∼ GBETA(α, β, a, b), then

E(X) = (b− a)
α

α+ β
+ a

V ar(X) = (b− a)2
αβ

(α+ β)2 (α+ β + 1)
.

It can be shown that if X = (b − a)Y + a and Y ∼ BETA(α, β), then
X ∼ GBETA(α, β, a, b). Thus using Theorem 6.5, we get

E(X) = E((b− a)Y + a) = (b− a)E(Y ) + a = (b− a)
α

α+ β
+ a

and

V ar(X) = V ar((b−a)Y +a) = (b−a)2V ar(Y ) = (b−a)2
αβ

(α+ β)2(α+ β + 1)
.

6.4. Normal Distribution

Among continuous probability distributions, the normal distribution is
very well known since it arises in many applications. Normal distribution
was discovered by a French mathematician Abraham DeMoivre (1667-1754).
DeMoivre wrote two important books. One is called the Annuities Upon
Lives, the first book on actuarial sciences and the second book is called the
Doctrine of Chances, one of the early books on the probability theory. Pierre-
Simon Laplace (1749-1827) applied normal distribution to astronomy. Carl
Friedrich Gauss (1777-1855) used normal distribution in his studies of prob-
lems in physics and astronomy. Adolphe Quetelet (1796-1874) demonstrated
that man’s physical traits (such as height, chest expansion, weight etc.) as
well as social traits follow normal distribution. The main importance of nor-
mal distribution lies on the central limit theorem which says that the sample
mean has a normal distribution if the sample size is large.

Definition 6.7. A random variable X is said to have a normal distribution
if its probability density function is given by

f(x) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )2

, −∞ < x <∞,

where −∞ < µ < ∞ and 0 < σ2 < ∞ are arbitrary parameters. If X has a
normal distribution with parameters µ and σ2, then we write X ∼ N(µ, σ2).
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Example 6.20. Is the real valued function defined by

f(x) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )2

, −∞ < x <∞

a probability density function of some random variable X?

Answer: To answer this question, we must check that f is nonnegative
and it integrates to 1. The nonnegative part is trivial since the exponential
function is always positive. Hence using property of the gamma function, we
show that f integrates to 1 on IR.
∫ ∞

−∞
f(x) dx =

∫ ∞

−∞

1
σ
√

2π
e−

1
2 ( x−µ

σ )2

dx

= 2
∫ ∞

µ

1
σ
√

2π
e−

1
2 ( x−µ

σ )2

dx

=
2

σ
√

2π

∫ ∞

0
e−z σ√

2 z
dz, where z =

1
2

(
x− µ

σ

)2

=
1√
π

∫ ∞

0

1√
z

e−z dz

=
1√
π
Γ
(

1
2

)
=

1√
π

√
π = 1.

The following theorem tells us that the parameter µ is the mean and the
parameter σ2 is the variance of the normal distribution.
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Theorem 6.6. If X ∼ N(µ, σ2), then

E(X) = µ

V ar(X) = σ2

M(t) = eµt+ 1
2 σ2t2 .

Proof: We prove this theorem by first computing the moment generating
function and finding out the mean and variance of X from it.

M(t) = E
(
etX
)

=
∫ ∞

−∞
etx f(x) dx

=
∫ ∞

−∞
etx 1
σ
√

2π
e−

1
2 ( x−µ

σ )2

dx

=
∫ ∞

−∞
etx 1
σ
√

2π
e−

1
2σ2 (x2−2µx+µ2) dx

=
∫ ∞

−∞

1
σ
√

2π
e−

1
2σ2 (x2−2µx+µ2−2σ2tx) dx

=
∫ ∞

−∞

1
σ
√

2π
e−

1
2σ2 (x−µ−σ2t)2

eµt+ 1
2 σ2 t2 dx

= eµt+ 1
2 σ2 t2
∫ ∞

−∞

1
σ
√

2π
e−

1
2σ2 (x−µ−σ2t)2

dx

= eµt+ 1
2 σ2 t2 .

The last integral integrates to 1 because the integrand is the probability
density function of a normal random variable whose mean is µ + σ2t and
variance σ2, that is N(µ + σ2t, σ2). Finally, from the moment generating
function one determines the mean and variance of the normal distribution.
We leave this part to the reader.

Example 6.21. If X is any random variable with mean µ and variance σ2 >

0, then what are the mean and variance of the random variable Y = X−µ
σ ?
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Answer: The mean of the random variable Y is

E(Y ) = E

(
X − µ

σ

)

=
1
σ

E (X − µ)

=
1
σ

(E(X)− µ)

=
1
σ

(µ− µ)

= 0.

The variance of Y is given by

V ar(Y ) = V ar

(
X − µ

σ

)

=
1
σ2

V ar (X − µ)

=
1
σ

V ar(X)

=
1
σ2
σ2

= 1.

Hence, if we define a new random variable by taking a random variable and
subtracting its mean from it and then dividing the resulting by its stan-
dard deviation, then this new random variable will have zero mean and unit
variance.

Definition 6.8. A normal random variable is said to be standard normal, if
its mean is zero and variance is one. We denote a standard normal random
variable X by X ∼ N(0, 1).

The probability density function of standard normal distribution is the
following:

f(x) =
1√
2π

e−
x2
2 , −∞ < x <∞.

Example 6.22. If X ∼ N(0, 1), what is the probability of the random
variable X less than or equal to −1.72?

Answer:

P (X ≤ −1.72) = 1− P (X ≤ 1.72)

= 1− 0.9573 (from table)

= 0.0427.
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Example 6.23. If Z ∼ N(0, 1), what is the value of the constant c such
that P (|Z| ≤ c) = 0.95?

Answer:
0.95 = P (|Z| ≤ c)

= P (−c ≤ Z ≤ c)

= P (Z ≤ c)− P (Z ≤ −c)

= 2 P (Z ≤ c)− 1.

Hence
P (Z ≤ c) = 0.975,

and from this using the table we get

c = 1.96.

The following theorem is very important and allows us to find probabil-
ities by using the standard normal table.

Theorem 6.7. If X ∼ N(µ, σ2), then the random variable Z = X−µ
σ ∼

N(0, 1).

Proof: We will show that Z is standard normal by finding the probability
density function of Z. We compute the probability density of Z by cumulative
distribution function method.

F (z) = P (Z ≤ z)

= P

(
X − µ

σ
≤ z

)

= P (X ≤ σ z + µ)

=
∫ σ z+µ

−∞

1
σ
√

2π
e−

1
2 ( x−µ

σ )2

dx

=
∫ z

−∞

1
σ
√

2π
σ e−

1
2 w2

dw, where w =
x− µ

σ
.

Hence
f(z) = F ′(z) =

1√
2π

e−
1
2 z2

.

The following example illustrates how to use standard normal table to
find probability for normal random variables.

Example 6.24. If X ∼ N(3, 16), then what is P (4 ≤ X ≤ 8)?
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Answer:
P (4 ≤ X ≤ 8) = P

(
4− 3

4
≤ X − 3

4
≤ 8− 3

4

)

= P

(
1
4
≤ Z ≤ 5

4

)

= P (Z ≤ 1.25)− P (Z ≤ 0.25)

= 0.8944− 0.5987

= 0.2957.

Example 6.25. If X ∼ N(25, 36), then what is the value of the constant c

such that P (|X − 25| ≤ c) = 0.9544?

Answer:
0.9544 = P (|X − 25| ≤ c)

= P (−c ≤ X − 25 ≤ c)

= P

(
− c

6
≤ X − 25

6
≤ c

6

)

= P
(
− c

6
≤ Z ≤ c

6

)

= P
(
Z ≤ c

6

)
− P
(
Z ≤ − c

6

)

= 2 P
(
Z ≤ c

6

)
− 1.

Hence
P
(
Z ≤ c

6

)
= 0.9772

and from this, using the normal table, we get

c

6
= 2 or c = 12.

The following theorem can be proved similar to Theorem 6.7.

Theorem 6.8. If X ∼ N(µ, σ2), then the random variable
(

X−µ
σ

)2
∼ χ2(1).

Proof: Let W =
(

X−µ
σ

)2
and Z = X−µ

σ . We will show that the random
variable W is chi-square with 1 degree of freedom. This amounts to showing
that the probability density function of W to be

g(w) =






1√
2π w

e−
1
2 w if 0 < w <∞

0 otherwise .
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We compute the probability density function of W by distribution function
method. Let G(w) be the cumulative distribution function W , which is

G(w) = P (W ≤ w)

= P

((
X − µ

σ

)2

≤ w

)

= P

(
−
√

w ≤ X − µ

σ
≤
√

w

)

= P
(
−
√

w ≤ Z ≤
√

w
)

=
∫ √

w

−
√

w
f(z) dz,

where f(z) denotes the probability density function of the standard normal
random variable Z. Thus, the probability density function of W is given by

g(w) =
d

dw
G(w)

=
d

dw

∫ √
w

−
√

w
f(z) dz

= f
(√

w
) d
√

w

dw
− f
(
−
√

w
) d (−

√
w)

dw

=
1√
2π

e−
1
2 w 1

2
√

w
+

1√
2π

e−
1
2 w 1

2
√

w

=
1√

2π w
e−

1
2 w.

Thus, we have shown that W is chi-square with one degree of freedom and
the proof is now complete.

Example 6.26. If X ∼ N(7, 4), what is P
(
15.364 ≤ (X − 7)2 ≤ 20.095

)
?

Answer: Since X ∼ N(7, 4), we get µ = 7 and σ = 2. Thus

P
(
15.364 ≤ (X − 7)2 ≤ 20.095

)

= P

(
15.364

4
≤
(

X − 7
2

)2

≤ 20.095
4

)

= P
(
3.841 ≤ Z2 ≤ 5.024

)

= P
(
0 ≤ Z2 ≤ 5.024

)
− P
(
0 ≤ Z2 ≤ 3.841

)

= 0.975− 0.949

= 0.026.
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A generalization of the normal distribution is the following:

g(x) =
ν ϕ(ν)

2σ Γ(1/ν)
e
−
(
ϕ(ν)
σ |x−µ|

)ν

where

ϕ(ν) =

√
Γ(3/ν)
Γ(1/ν)

and ν and σ are real positive constants and −∞ < µ < ∞ is a real con-
stant. The constant µ represents the mean and the constant σ represents
the standard deviation of the generalized normal distribution. If ν = 2, then
generalized normal distribution reduces to the normal distribution. If ν = 1,
then the generalized normal distribution reduces to the Laplace distribution
whose density function is given by

f(x) =
1

2 θ
e−

|x−µ|
θ

where θ = σ√
2
. The generalized normal distribution is very useful in signal

processing and in particular modeling of the discrete cosine transform (DCT)
coefficients of a digital image.

6.5. Lognormal Distribution

The study lognormal distribution was initiated by Galton and McAlister
in 1879. They came across this distribution while studying the use of the
geometric mean as an estimate of location. Later, Kapteyn (1903) discussed
the genesis of this distribution. This distribution can be defined as the distri-
bution of a random variable whose logarithm is normally distributed. Often
the size distribution of organisms, the distribution of species, the distribu-
tion of the number of persons in a census occupation class, the distribution of
stars in the universe, and the distribution of the size of incomes are modeled
by lognormal distributions. The lognormal distribution is used in biology,
astronomy, economics, pharmacology and engineering. This distribution is
sometimes known as the Galton-McAlister distribution. In economics, the
lognormal distribution is called the Cobb-Douglas distribution.

Definition 6.10. A random variable X is said to have a lognormal distri-
bution if its probability density function is given by

f(x) =






1
xσ

√
2π

e
− 1

2

(
ln(x)−µ

σ

)2
, if 0 < x <∞

0 otherwise ,
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where −∞ < µ <∞ and 0 < σ2 <∞ are arbitrary parameters.
If X has a lognormal distribution with parameters µ and σ2, then we

write X ∼
∧
\(µ, σ2).

Example 6.27. If X ∼
∧
\(µ, σ2), what is the 100pth percentile of X?

Answer: Let q be the 100pth percentile of X. Then by definition of per-
centile, we get

p =
∫ q

0

1
xσ
√

2π
e
− 1

2

(
ln(x)−µ

σ

)2
dx.

Substituting z = ln(x)−µ
σ in the above integral, we have

p =
∫ ln(q)−µ

σ

−∞

1√
2π

e−
1
2 z2

dz

=
∫ zp

−∞

1√
2π

e−
1
2 z2

dz,

where zp = ln(q)−µ
σ is the 100pth of the standard normal random variable.

Hence 100pth percentile of X is

q = eσ zp+µ,

where zp is the 100pth percentile of the standard normal random variable Z.

Theorem 6.9. If X ∼
∧
\(µ, σ2), then

E(X) = eµ+ 1
2σ

2

V ar(X) =
[
eσ

2
− 1
]
e2µ+σ2

.
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Proof: Let t be a positive integer. We compute the tth moment of X.

E
(
Xt
)

=
∫ ∞

0
xt f(x) dx

=
∫ ∞

0
xt 1

xσ
√

2π
e
− 1

2

(
ln(x)−µ

σ

)2
dx.

Substituting z = ln(x) in the last integral, we get

E
(
Xt
)

=
∫ ∞

−∞
etz 1
σ
√

2π
e−

1
2 ( z−µ

σ )2

dz = MZ(t),

where MZ(t) denotes the moment generating function of the random variable
Z ∼ N(µ, σ2). Therefore,

MZ(t) = eµt+ 1
2σ

2t2 .

Thus letting t = 1, we get

E(X) = eµ+ 1
2σ

2
.

Similarly, taking t = 2, we have

E(X2) = e2µ+2σ2
.

Thus, we have

V ar(X) = E(X2)− E(X)2 =
[
eσ

2
− 1
]
e2µ+σ2

and now the proof of the theorem is complete.

Example 6.28. If X ∼
∧
\(0, 4), then what is the probability that X is

between 1 and 12.1825?

Answer: Since X ∼
∧
\(0, 4), the random variable Y = ln(X) ∼ N(0, 4).

Hence

P (1 ≤ X ≤ 12.1825) = P (ln(1) ≤ ln(X) ≤ ln(12.1825))

= P (0 ≤ Y ≤ 2.50)

= P (0 ≤ Z ≤ 1.25)

= P (Z ≤ 1.25)− P (Z ≤ 0)

= 0.8944− 0.5000

= 0.4944.
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Example 6.29. If the amount of time needed to solve a problem by a group
of students follows the lognormal distribution with parameters µ and σ2,
then what is the value of µ so that the probability of solving a problem in 10
minutes or less by any randomly picked student is 95% when σ2 = 4?

Answer: Let the random variable X denote the amount of time needed
to a solve a problem. Then X ∼

∧
\(µ, 4). We want to find µ so that

P (X ≤ 10) = 0.95. Hence

0.95 = P (X ≤ 10)

= P (ln(X) ≤ ln(10))

= P (ln(X)− µ ≤ ln(10)− µ)

= P

(
ln(X)− µ

2
≤ ln(10)− µ

2

)

= P

(
Z ≤ ln(10)− µ

2

)
,

where Z ∼ N(0, 1). Using the table for standard normal distribution, we get

ln(10)− µ

2
= 1.65.

Hence
µ = ln(10)− 2(1.65) = 2.3025− 3.300 = −0.9975.

6.6. Inverse Gaussian Distribution

If a sufficiently small macroscopic particle is suspended in a fluid that is
in thermal equilibrium, the particle will move about erratically in response
to natural collisional bombardments by the individual molecules of the fluid.
This erratic motion is called “Brownian motion” after the botanist Robert
Brown (1773-1858) who first observed this erratic motion in 1828. Inde-
pendently, Einstein (1905) and Smoluchowski (1906) gave the mathematical
description of Brownian motion. The distribution of the first passage time
in Brownian motion is the inverse Gaussian distribution. This distribution
was systematically studied by Tweedie in 1945. The interpurchase times of
toothpaste of a family, the duration of labor strikes in a geographical region,
word frequency in a language, conversion time for convertible bonds, length
of employee service, and crop field size follow inverse Gaussian distribution.
Inverse Gaussian distribution is very useful for analysis of certain skewed
data.
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Definition 6.10. A random variable X is said to have an inverse Gaussian
distribution if its probability density function is given by

f(x) =






√
λ
2π x− 3

2 e
−λ(x−µ)2

2µ2x , if 0 < x <∞

0 otherwise,

where 0 < µ <∞ and 0 < λ < ∞ are arbitrary parameters.
If X has an inverse Gaussian distribution with parameters µ and λ, then

we write X ∼ IG(µ, λ).

The characteristic function φ(t) of X ∼ IG(µ, λ) is

φ(t) = E
(
eitX
)

= e
λ
µ

[
1−
√

1− 2iµ2t
λ

]

.
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Using this, we have the following theorem.

Theorem 6.10. If X ∼ IG(µ, λ), then

E(X) = µ

V ar(X) =
µ3

λ
.

Proof: Since φ(t) = E
(
eitX
)
, the derivative φ′(t) = i E

(
XeitX
)
. Therefore

φ′(0) = i E (X). We know the characteristic function φ(t) of X ∼ IG(µ, λ)
is

φ(t) = e
λ
µ

[
1−
√

1− 2iµ2t
λ

]

.

Differentiating φ(t) with respect to t, we have

φ′(t) =
d

dt

[
e
λ
µ

[
1−
√

1− 2iµ2t
λ

]]

= e
λ
µ

[
1−
√

1− 2iµ2t
λ

]
d

dt

(
λ

µ

[
1−
√

1− 2iµ2t

λ

])

= iµ e
λ
µ

[
1−
√

1− 2iµ2t
λ

] (
1− 2iµ2t

λ

)− 1
2

.

Hence φ′(0) = i µ. Therefore, E(X) = µ. Similarly, one can show that

V ar(X) =
µ3

λ
.

This completes the proof of the theorem.
The distribution function F (x) of the inverse Gaussian random variable

X with parameters µ and λ was computed by Shuster (1968) as

F (x) = Φ

(√
λ

µ

[
x

µ
− 1
])

+ e
2λ
µ Φ

(
−

√
λ

µ

[
x

µ
+ 1
])

,

where Φ is the distribution function of the standard normal distribution
function.

6.7. Logistics Distribution

The logistic distribution is often considered as an alternative to the uni-
variate normal distribution. The logistic distribution has a shape very close
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to that of a normal distribution but has heavier tails than the normal. The
logistic distribution is used in modeling demographic data. It is also used as
an alternative to the Weibull distribution in life-testing.

Definition 6.11. A random variable X is said to have a logistic distribution
if its probability density function is given by

f(x) =
π

σ
√

3
e−

π√
3 ( x−µ

σ )
[
1 + e−

π√
3 ( x−µ

σ )
]2 −∞ < x <∞,

where −∞ < µ <∞ and σ > 0 are parameters.

If X has a logistic distribution with parameters µ and σ, then we write
X ∼ LOG(µ, σ).

Theorem 6.11. If X ∼ LOG(µ, λ), then

E(X) = µ

V ar(X) = σ2

M(t) = eµt Γ

(
1 +

√
3
π
σt

)
Γ

(
1−

√
3
π
σt

)
, |t| <

π

σ
√

3
.

Proof: First, we derive the moment generating function of X and then we
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compute the mean and variance of it. The moment generating function is

M(t) =
∫ ∞

−∞
etx f(x) dx

=
∫ ∞

−∞
etx π

σ
√

3
e−

π√
3 ( x−µ

σ )
[
1 + e−

π√
3 ( x−µ

σ )
]2 dx

= eµt

∫ ∞

−∞
esw e−w

(1 + e−w)2
dw, where w =

π(x− µ)√
3σ

and s =
√

3σ
π

t

= eµt

∫ ∞

−∞

(
e−w
)−s e−w

(1 + e−w)2
dw

= eµt

∫ 1

0

(
z−1 − 1

)−s
dz, where z =

1
1 + e−w

= eµt

∫ 1

0
zs (1− z)−s dz

= eµt B(1 + s, 1− s)

= eµt Γ(1 + s) Γ(1− s)
Γ(1 + s + 1− s)

= eµt Γ(1 + s) Γ(1− s)
Γ(2)

= eµt Γ(1 + s) Γ(1− s)

= eµt Γ

(
1 +

√
3
π
σt

)
Γ

(
1−

√
3
π
σt

)

= eµt

(√
3σ
π

t

)
cosec

(√
3σ
π

t

)
.

We leave the rest of the proof to the reader.

6.8. Review Exercises

1. If Y ∼ UNIF (0, 1), then what is the probability density function of
X = − lnY ?

2. Let the probability density function of X be

f(x) =
{

e−x if x > 0
0 otherwise .

Let Y = 1− e−X . Find the distribution of Y .
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3. After a certain time the weight W of crystals formed is given approxi-
mately by W = eX where X ∼ N(µ, σ2). What is the probability density
function of W for 0 < w <∞ ?

4. What is the probability that a normal random variable with mean 6 and
standard deviation 3 will fall between 5.7 and 7.5 ?

5. Let X have a distribution with the 75th percentile equal to 1
3 and proba-

bility density function equal to

f(x) =

{
λ e−λx for 0 < x <∞

0 otherwise.

What is the value of the parameter λ ?

6. If a normal distribution with mean µ and variance σ2 > 0 has 46th

percentile equal to 20σ, then what is µ in term of standard deviation?

7. Let X be a random variable with cumulative distribution function

F (x) =

{ 0 if x ≤ 0

1− e−x if x > 0.

What is P
(
0 ≤ eX ≤ 4

)
?

8. Let X have the density function

f(x) =






Γ(α+β)
Γ(α) Γ(β) xα−1 (1− x)β−1 for 0 < x < 1

0 otherwise,

where α > 0 and β > 0. If β = 6 and α = 5, what is the mean of the random
variable (1−X)−1 ?

9. R.A. Fisher proved that when n ≥ 30 and Y has a chi-square distribution
with n degrees freedom, then

√
2Y −

√
2n− 1 has an approximate standard

normal distribution. Under this approximation, what is the 90th percentile
of Y when n = 41 ?
10. Let Y have a chi-square distribution with 32 degrees of freedom so that
its variance is 64. If P (Y > c) = 0.0668, then what is the approximate value
of the constant c?

11. If in a certain normal distribution of X, the probability is 0.5 that X is
less than 500 and 0.0227 that X is greater than 650. What is the standard
deviation of X?
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12. If X ∼ N(5, 4), then what is the probability that 8 < Y < 13 where
Y = 2X + 1?

13. Given the probability density function of a random variable X as

f(x) =






θ e−θx if x > 0

0 otherwise,

what is the nth moment of X about the origin?

14. If the random variable X is normal with mean 1 and standard deviation
2, then what is P

(
X2 − 2X ≤ 8

)
?

15. Suppose X has a standard normal distribution and Y = eX . What is
the kth moment of Y ?

16. If the random variable X has uniform distribution on the interval [0, a],
what is the probability that the random variable greater than its square, that
is P
(
X > X2

)
?

17. If the random variable Y has a chi-square distribution with 54 degrees
of freedom, then what is the approximate 84th percentile of Y ?

18. Let X be a continuous random variable with density function

f(x) =

{ 2
x2 for 1 < x < 2

0 elsewhere.

If Y =
√

X, what is the density function for Y where nonzero?

19. If X is normal with mean 0 and variance 4, then what is the probability
of the event X − 4

X ≥ 0, that is P
(
X − 4

X ≥ 0
)
?

20. If the waiting time at Rally’s drive-in-window is normally distributed
with mean 13 minutes and standard deviation 2 minutes, then what percent-
age of customers wait longer than 10 minutes but less than 15 minutes?

21. If X is uniform on the interval from −5 to 5, what is the probability that
the quadratic equation 100t2 + 20tX + 2X + 3 = 0 has complex solutions?

22. If the random variable X ∼ Exp(θ), then what is the probability density
function of the random variable Y = X

√
X?

23. If the random variable X ∼ N(0, 1), then what is the probability density
function of the random variable Y =

√
|X|?
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24. If the random variable X ∼
∧
\(µ, σ2), then what is the probability

density function of the random variable ln(X)?

25. If the random variable X ∼
∧
\(µ, σ2), then what is the mode of X?

26. If the random variable X ∼
∧
\(µ, σ2), then what is the median of X?

27. If the random variable X ∼
∧
\(µ, σ2), then what is the probability that

the quadratic equation 4t2 + 4tX + X + 2 = 0 has real solutions?

28. Consider the Karl Pearson’s differential equation p(x) dy
dx + q(x) y = 0

where p(x) = a + bx + cx2 and q(x) = x − d. Show that if a = c = 0,
b > 0, d > −b, then y(x) is gamma; and if a = 0, b = −c, d−1

b < 1, d
b > −1,

then y(x) is beta.

29. Let a, b, α, β be any four real numbers with a < b and α, β positive.
If X ∼ BETA(α, β), then what is the probability density function of the
random variable Y = (b− a)X + a?

30. A nonnegative continuous random variable X is said to be memoryless if
P (X > s + t/X > t) = P (X > s) for all s, t ≥ 0. Show that the exponential
random variable is memoryless.

31. Show that every nonnegative continuous memoryless random variable is
an exponential random variable.

32. Using gamma function evaluate the following integrals:
(i)
∫∞
0 e−x2

dx; (ii)
∫∞
0 x e−x2

dx; (iii)
∫∞
0 x2 e−x2

dx; (iv)
∫∞
0 x3 e−x2

dx.

33. Using beta function evaluate the following integrals:
(i)
∫ 1
0 x2 (1− x)2 dx; (ii)

∫ 100
0 x5 (100− x)7 dx; (iii)

∫ 1
0 x11 (1− x3)7 dx.

34. If Γ(z) denotes the gamma function, then prove that

Γ(1 + t) Γ(1− t) = tcosec(t).

35. Let α and β be given positive real numbers, with α < β. If two points
are selected at random from a straight line segment of length β, what is the
probability that the distance between them is at least α ?

36. If the random variable X ∼ GAM(θ, α), then what is the nth moment
of X about the origin?
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Chapter 7

TWO RANDOM VARIABLES

There are many random experiments that involve more than one random
variable. For example, an educator may study the joint behavior of grades
and time devoted to study; a physician may study the joint behavior of blood
pressure and weight. Similarly an economist may study the joint behavior of
business volume and profit. In fact, most real problems we come across will
have more than one underlying random variable of interest.

7.1. Bivariate Discrete Random Variables

In this section, we develop all the necessary terminologies for studying
bivariate discrete random variables.

Definition 7.1. A discrete bivariate random variable (X, Y ) is an ordered
pair of discrete random variables.

Definition 7.2. Let (X, Y ) be a bivariate random variable and let RX and
RY be the range spaces of X and Y , respectively. A real-valued function
f : RX × RY → IR is called a joint probability density function for X and Y

if and only if
f(x, y) = P (X = x, Y = y)

for all (x, y) ∈ RX × RY . Here, the event (X = x, Y = y) means the
intersection of the events (X = x) and (Y = y), that is

(X = x)
⋂

(Y = y).

Example 7.1. Roll a pair of unbiased dice. If X denotes the smaller and
Y denotes the larger outcome on the dice, then what is the joint probability
density function of X and Y ?
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Answer: The sample space S of rolling two dice consists of

S =

{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

The probability density function f(x, y) can be computed for X = 2 and
Y = 3 as follows: There are two outcomes namely (2, 3) and (3, 2) in the
sample S of 36 outcomes which contribute to the joint event (X = 2, Y = 3).
Hence

f(2, 3) = P (X = 2, Y = 3) =
2
36

.

Similarly, we can compute the rest of the probabilities. The following table
shows these probabilities:

6 2
36

2
36

2
36

2
36

2
36

1
36

5 2
36

2
36

2
36

2
36

1
36 0

4 2
36

2
36

2
36

1
36 0 0

3 2
36

2
36

1
36 0 0 0

2 2
36

1
36 0 0 0 0

1 1
36 0 0 0 0 0

1 2 3 4 5 6

These tabulated values can be written as

f(x, y) =






1
36 if 1 ≤ x = y ≤ 6

2
36 if 1 ≤ x < y ≤ 6

0 otherwise.

Example 7.2. A group of 9 executives of a certain firm include 4 who
are married, 3 who never married, and 2 who are divorced. Three of the
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executives are to be selected for promotion. Let X denote the number of
married executives and Y the number of never married executives among
the 3 selected for promotion. Assuming that the three are randomly selected
from the nine available, what is the joint probability density function of the
random variables X and Y ?

Answer: The number of ways we can choose 3 out of 9 is
(9
3

)
which is 84.

Thus

f(0, 0) = P (X = 0, Y = 0) =
0
84

= 0

f(1, 0) = P (X = 1, Y = 0) =
(4
1

) (3
0

) (2
2

)

84
=

4
84

f(2, 0) = P (X = 2, Y = 0) =
(4
2

) (3
0

) (2
1

)

84
=

12
84

f(3, 0) = P (X = 3, Y = 0) =
(4
3

) (3
0

) (2
0

)

84
=

4
84

.

Similarly, we can find the rest of the probabilities. The following table gives
the complete information about these probabilities.

3 1
84 0 0 0

2 6
84

12
84 0 0

1 3
84

24
84

18
84 0

0 0 4
84

12
84

4
84

0 1 2 3

Definition 7.3. Let (X, Y ) be a discrete bivariate random variable. Let
RX and RY be the range spaces of X and Y , respectively. Let f(x, y) be the
joint probability density function of X and Y . The function

f1(x) =
∑

y∈RY

f(x, y)
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is called the marginal probability density function of X. Similarly, the func-
tion

f2(y) =
∑

x∈RX

f(x, y)

is called the marginal probability density function of Y .

The following diagram illustrates the concept of marginal graphically.

Example 7.3. If the joint probability density function of the discrete random
variables X and Y is given by

f(x, y) =






1
36 if 1 ≤ x = y ≤ 6

2
36 if 1 ≤ x < y ≤ 6

0 otherwise,
then what are marginals of X and Y ?

Answer: The marginal of X can be obtained by summing the joint proba-
bility density function f(x, y) for all y values in the range space RY of the
random variable Y . That is

f1(x) =
∑

y∈RY

f(x, y)

=
6∑

y=1

f(x, y)

= f(x, x) +
∑

y>x

f(x, y) +
∑

y<x

f(x, y)

=
1
36

+ (6− x)
2
36

+ 0

=
1
36

[13− 2 x] , x = 1, 2, ..., 6.
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Similarly, one can obtain the marginal probability density of Y by summing
over for all x values in the range space RX of the random variable X. Hence

f2(y) =
∑

x∈RX

f(x, y)

=
6∑

x=1

f(x, y)

= f(y, y) +
∑

x<y

f(x, y) +
∑

x>y

f(x, y)

=
1
36

+ (y − 1)
2
36

+ 0

=
1
36

[2y − 1] , y = 1, 2, ..., 6.

Example 7.4. Let X and Y be discrete random variables with joint proba-
bility density function

f(x, y) =

{ 1
21 (x + y) if x = 1, 2; y = 1, 2, 3

0 otherwise.
What are the marginal probability density functions of X and Y ?

Answer: The marginal of X is given by

f1(x) =
3∑

y=1

1
21

(x + y)

=
1
21

3 x +
1
21

[1 + 2 + 3]

=
x + 2

7
, x = 1, 2.

Similarly, the marginal of Y is given by

f2(y) =
2∑

x=1

1
21

(x + y)

=
2y

21
+

3
21

=
3 + 2 y

21
, y = 1, 2, 3.

From the above examples, note that the marginal f1(x) is obtained by sum-
ming across the columns. Similarly, the marginal f2(y) is obtained by sum-
ming across the rows.
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The following theorem follows from the definition of the joint probability
density function.

Theorem 7.1. A real valued function f of two variables is a joint probability
density function of a pair of discrete random variables X and Y (with range
spaces RX and RY , respectively) if and only if

(a) f(x, y) ≥ 0 for all (x, y) ∈ RX ×RY ;

(b)
∑

x∈RX

∑

y∈RY

f(x, y) = 1.

Example 7.5. For what value of the constant k the function given by

f(x, y) =

{
k xy if x = 1, 2, 3; y = 1, 2, 3

0 otherwise

is a joint probability density function of some random variables X and Y ?

Answer: Since

1 =
3∑

x=1

3∑

y=1

f(x, y)

=
3∑

x=1

3∑

y=1

k x y

= k [1 + 2 + 3 + 2 + 4 + 6 + 3 + 6 + 9]

= 36 k.

Hence
k =

1
36

and the corresponding density function is given by

f(x, y) =

{ 1
36 xy if x = 1, 2, 3; y = 1, 2, 3

0 otherwise .

As in the case of one random variable, there are many situations where
one wants to know the probability that the values of two random variables
are less than or equal to some real numbers x and y.
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Definition 7.4. Let X and Y be any two discrete random variables. The
real valued function F : IR2 → IR is called the joint cumulative probability
distribution function of X and Y if and only if

F (x, y) = P (X ≤ x, Y ≤ y)

for all (x, y) ∈ IR2. Here, the event (X ≤ x, Y ≤ y) means (X ≤ x)
⋂

(Y ≤ y).

From this definition it can be shown that for any real numbers a and b

F (a ≤ X ≤ b, c ≤ Y ≤ d) = F (b, d) + F (a, c)− F (a, d)− F (b, c).

Further, one can also show that

F (x, y) =
∑

s≤x

∑

t≤y

f(s, t)

where (s, t) is any pair of nonnegative numbers.

7.2. Bivariate Continuous Random Variables

In this section, we shall extend the idea of probability density functions
of one random variable to that of two random variables.

Definition 7.5. The joint probability density function of the random vari-
ables X and Y is an integrable function f(x, y) such that

(a) f(x, y) ≥ 0 for all (x, y) ∈ IR2; and
(b)
∫∞
−∞
∫∞
−∞ f(x, y) dx dy = 1.

Example 7.6. Let the joint density function of X and Y be given by

f(x, y) =

{
k xy2 if 0 < x < y < 1

0 otherwise.

What is the value of the constant k ?



Two Random Variables 192

Answer: Since f is a joint probability density function, we have

1 =
∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy

=
∫ 1

0

∫ y

0
k x y2 dx dy

=
∫ 1

0
k y2

∫ y

0
x dx dy

=
k

2

∫ 1

0
y4 dy

=
k

10
[
y5
]1
0

=
k

10
.

Hence k = 10.

If we know the joint probability density function f of the random vari-
ables X and Y , then we can compute the probability of the event A from

P (A) =
∫ ∫

A
f(x, y) dx dy.

Example 7.7. Let the joint density of the continuous random variables X

and Y be

f(x, y) =

{ 6
5

(
x2 + 2 xy

)
if 0 ≤ x ≤ 1; 0 ≤ y ≤ 1

0 elsewhere.
What is the probability of the event (X ≤ Y ) ?
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Answer: Let A = (X ≤ Y ). we want to find

P (A) =
∫ ∫

A
f(x, y) dx dy

=
∫ 1

0

[∫ y

0

6
5
(
x2 + 2 x y

)
dx

]
dy

=
6
5

∫ 1

0

[
x3

3
+ x2 y

]x=y

x=0

dy

=
6
5

∫ 1

0

4
3

y3 dy

=
2
5
[
y4
]1
0

=
2
5
.

Definition 7.6. Let (X, Y ) be a continuous bivariate random variable. Let
f(x, y) be the joint probability density function of X and Y . The function

f1(x) =
∫ ∞

−∞
f(x, y) dy

is called the marginal probability density function of X. Similarly, the func-
tion

f2(y) =
∫ ∞

−∞
f(x, y) dx

is called the marginal probability density function of Y .

Example 7.8. If the joint density function for X and Y is given by

f(x, y) =






3
4 for 0 < y2 < x < 1

0 otherwise,

then what is the marginal density function of X, for 0 < x < 1?

Answer: The domain of the f consists of the region bounded by the curve
x = y2 and the vertical line x = 1. (See the figure on the next page.)
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Hence

f1(x) =
∫ √

x

−
√

x

3
4

dy

=
[
3
4

y

]√x

−
√

x

=
3
2
√

x.

Example 7.9. Let X and Y have joint density function

f(x, y) =

{
2 e−x−y for 0 < x ≤ y < ∞

0 otherwise.

What is the marginal density of X where nonzero?
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Answer: The marginal density of X is given by

f1(x) =
∫ ∞

−∞
f(x, y) dy

=
∫ ∞

x
2 e−x−y dy

= 2 e−x

∫ ∞

x
e−y dy

= 2 e−x
[
−e−y
]∞
x

= 2 e−x e−x

= 2 e−2x 0 < x <∞.

Example 7.10. Let (X, Y ) be distributed uniformly on the circular disk
centered at (0, 0) with radius 2√

π
. What is the marginal density function of

X where nonzero?

Answer: The equation of a circle with radius 2√
π

and center at the origin is

x2 + y2 =
4
π

.

Hence, solving this equation for y, we get

y = ±
√

4
π
− x2.

Thus, the marginal density of X is given by
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f1(x) =
∫ √ 4

π−x2

−
√

4
π−x2

f(x, y) dy

=
∫ √ 4

π−x2

−
√

4
π−x2

1
area of the circle

dy

=
∫ √ 4

π−x2

−
√

4
π−x2

1
4

dy

=
[
1
4

y

]√ 4
π−x2

−
√

4
π−x2

=
1
2

√
4
π
− x2.

Definition 7.7. Let X and Y be the continuous random variables with
joint probability density function f(x, y). The joint cumulative distribution
function F (x, y) of X and Y is defined as

F (x, y) = P (X ≤ x, Y ≤ y) =
∫ y

−∞

∫ x

−∞
f(u, v) du dv

for all (x, y) ∈ IR2.

From the fundamental theorem of calculus, we again obtain

f(x, y) =
∂2F

∂x ∂y
.

Example 7.11. If the joint cumulative distribution function of X and Y is
given by

F (x, y) =






1
5

(
2 x3 y + 3 x2 y2

)
for 0 < x, y < 1

0 elsewhere,

then what is the joint density of X and Y ?
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Answer:

f(x, y) =
1
5
∂

∂x

∂

∂y

(
2 x3 y + 3 x2 y2

)

=
1
5
∂

∂x

(
2 x3 + 6 x2 y

)

=
1
5
(
6 x2 + 12 x y

)

=
6
5

(x2 + 2 x y).

Hence, the joint density of X and Y is given by

f(x, y) =

{ 6
5

(
x2 + 2 x y

)
for 0 < x, y < 1

0 elsewhere.

Example 7.12. Let X and Y have the joint density function

f(x, y) =

{ 2x for 0 < x < 1; 0 < y < 1

0 elsewhere.

What is P
(
X + Y ≤ 1 / X ≤ 1

2

)
?

Answer: (See the diagram below.)
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P

(
X + Y ≤ 1 / X ≤ 1

2

)
=

P
[
(X + Y ≤ 1)

⋂ (
X ≤ 1

2

)]

P
(
X ≤ 1

2

)

=

∫ 1
2

0

[∫ 1
2

0 2 x dx
]

dy +
∫ 1

1
2

[∫ 1−y
0 2 x dx

]
dy

∫ 1
0

[∫ 1
2

0 2 x dx
]

dy

=
1
6
1
4

=
2
3
.

Example 7.13. Let X and Y have the joint density function

f(x, y) =

{
x + y for 0 ≤ x ≤ 1; 0 ≤ y ≤ 1

0 elsewhere.

What is P (2X ≤ 1 / X + Y ≤ 1) ?

Answer: We know that

P (2X ≤ 1 / X + Y ≤ 1) =
P
[(

X ≤ 1
2

) ⋂
(X + Y ≤ 1)

]

P (X + Y ≤ 1)
.

P [X + Y ≤ 1] =
∫ 1

0

[ ∫ 1−x

0
(x + y) dy

]
dx

=
[
x2

2
− x3

3
− (1− x)3

6

]1

0

=
2
6

=
1
3
.
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Similarly

P

[(
X ≤ 1

2

)⋂
(X + Y ≤ 1)

]
=
∫ 1

2

0

∫ 1−x

0
(x + y) dy dx

=
[
x2

2
− x3

3
− (1− x)3

6

] 1
2

0

=
11
48

.

Thus,

P (2X ≤ 1 / X + Y ≤ 1) =
(

11
48

) (
3
1

)
=

11
16

.

7.3. Conditional Distributions

First, we motivate the definition of conditional distribution using dis-
crete random variables and then based on this motivation we give a general
definition of the conditional distribution. Let X and Y be two discrete ran-
dom variables with joint probability density f(x, y). Then by definition of
the joint probability density, we have

f(x, y) = P (X = x, Y = y).

If A = {X = x}, B = {Y = y} and f2(y) = P (Y = y), then from the above
equation we have

P ({X = x} / {Y = y}) = P (A / B)

=
P (A
⋂

B)
P (B)

=
P ({X = x} and {Y = y})

P (Y = y)

=
f(x, y)
f2(y)

.

If we write the P ({X = x} / {Y = y}) as g(x / y), then we have

g(x / y) =
f(x, y)
f2(y)

.
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For the discrete bivariate random variables, we can write the conditional
probability of the event {X = x} given the event {Y = y} as the ratio of the
probability of the event {X = x}

⋂
{Y = y} to the probability of the event

{Y = y} which is

g(x / y) =
f(x, y)
f2(y)

.

We use this fact to define the conditional probability density function given
two random variables X and Y .

Definition 7.8. Let X and Y be any two random variables with joint density
f(x, y) and marginals f1(x) and f2(y). The conditional probability density
function g of X, given (the event) Y = y, is defined as

g(x / y) =
f(x, y)
f2(y)

f2(y) > 0.

Similarly, the conditional probability density function h of Y , given (the event)
X = x, is defined as

h(y / x) =
f(x, y)
f1(x)

f1(x) > 0.

Example 7.14. Let X and Y be discrete random variables with joint prob-
ability function

f(x, y) =

{ 1
21 (x + y) for x = 1, 2, 3; y = 1, 2.

0 elsewhere.

What is the conditional probability density function of X, given Y = 2 ?

Answer: We want to find g(x/2). Since

g(x / 2) =
f(x, 2)
f2(2)

we should first compute the marginal of Y , that is f2(2). The marginal of Y

is given by

f2(y) =
3∑

x=1

1
21

(x + y)

=
1
21

(6 + 3 y).
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Hence f2(2) = 12
21 . Thus, the conditional probability density function of X,

given Y = 2, is

g(x/2) =
f(x, 2)
f2(2)

=
1
21 (x + 2)

12
21

=
1
12

(x + 2), x = 1, 2, 3.

Example 7.15. Let X and Y be discrete random variables with joint prob-
ability density function

f(x, y) =

{ x+y
32 for x = 1, 2; y = 1, 2, 3, 4

0 otherwise.
What is the conditional probability of Y given X = x ?

Answer:

f1(x) =
4∑

y=1

f(x, y)

=
1
32

4∑

y=1

(x + y)

=
1
32

(4 x + 10).

Therefore
h(y/x) =

f(x, y)
f1(x)

=
1
32 (x + y)

1
32 (4 x + 10)

=
x + y

4x + 10
.

Thus, the conditional probability Y given X = x is

h(y/x) =

{ x+y
4x+10 for x = 1, 2; y = 1, 2, 3, 4

0 otherwise.

Example 7.16. Let X and Y be continuous random variables with joint pdf

f(x, y) =

{ 12 x for 0 < y < 2x < 1

0 otherwise .
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What is the conditional density function of Y given X = x ?

Answer: First, we have to find the marginal of X.

f1(x) =
∫ ∞

−∞
f(x, y) dy

=
∫ 2x

0
12 x dy

= 24 x2.

Thus, the conditional density of Y given X = x is

h(y/x) =
f(x, y)
f1(x)

=
12 x

24 x2

=
1
2x

, for 0 < y < 2x < 1

and zero elsewhere.

Example 7.17. Let X and Y be random variables such that X has density
function

f1(x) =

{
24 x2 for 0 < x < 1

2

0 elsewhere
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and the conditional density of Y given X = x is

h(y/x) =

{ y
2 x2 for 0 < y < 2x

0 elsewhere .

What is the conditional density of X given Y = y over the appropriate
domain?

Answer: The joint density f(x, y) of X and Y is given by

f(x, y) = h(y/x) f1(x)

=
y

2 x2
24 x2

= 12y for 0 < y < 2x < 1.

The marginal density of Y is given by

f2(y) =
∫ ∞

−∞
f(x, y) dx

=
∫ 1

2

y
2

12 y dx

= 6 y (1− y), for 0 < y < 1.

Hence, the conditional density of X given Y = y is

g(x/y) =
f(x, y)
f2(y)

=
12y

6 y (1− y)

=
2

1− y
.

Thus, the conditional density of X given Y = y is given by

g(x/y) =

{ 2
1−y for 0 < y < 2x < 1

0 otherwise.

Note that for a specific x, the function f(x, y) is the intersection (profile)
of the surface z = f(x, y) by the plane x = constant. The conditional density
f(y/x), is the profile of f(x, y) normalized by the factor 1

f1(x) .
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7.4. Independence of Random Variables

In this section, we define the concept of stochastic independence of two
random variables X and Y . The conditional probability density function g

of X given Y = y usually depends on y. If g is independent of y, then the
random variables X and Y are said to be independent. This motivates the
following definition.

Definition 7.8. Let X and Y be any two random variables with joint density
f(x, y) and marginals f1(x) and f2(y). The random variables X and Y are
(stochastically) independent if and only if

f(x, y) = f1(x) f2(y)

for all (x, y) ∈ RX ×RY .

Example 7.18. Let X and Y be discrete random variables with joint density

f(x, y) =






1
36 for 1 ≤ x = y ≤ 6

2
36 for 1 ≤ x < y ≤ 6.

Are X and Y stochastically independent?

Answer: The marginals of X and Y are given by

f1(x) =
6∑

y=1

f(x, y)

= f(x, x) +
∑

y>x

f(x, y) +
∑

y<x

f(x, y)

=
1
36

+ (6− x)
2
36

+ 0

=
13− 2x

36
, for x = 1, 2, ..., 6

and

f2(y) =
6∑

x=1

f(x, y)

= f(y, y) +
∑

x<y

f(x, y) +
∑

x>y

f(x, y)

=
1
36

+ (y − 1)
2
36

+ 0

=
2y − 1

36
, for y = 1, 2, ..., 6.
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Since
f(1, 1) =

1
36
+= 11

36
1
36

= f1(1) f2(1),

we conclude that f(x, y) += f1(x) f2(y), and X and Y are not independent.

This example also illustrates that the marginals of X and Y can be
determined if one knows the joint density f(x, y). However, if one knows the
marginals of X and Y , then it is not possible to find the joint density of X

and Y unless the random variables are independent.

Example 7.19. Let X and Y have the joint density

f(x, y) =

{
e−(x+y) for 0 < x, y <∞

0 otherwise.
Are X and Y stochastically independent?

Answer: The marginals of X and Y are given by

f1(x) =
∫ ∞

0
f(x, y) dy =

∫ ∞

0
e−(x+y) dy = e−x

and
f2(y) =

∫ ∞

0
f(x, y) dx =

∫ ∞

0
e−(x+y) dx = e−y.

Hence
f(x, y) = e−(x+y) = e−x e−y = f1(x) f2(y).

Thus, X and Y are stochastically independent.

Notice that if the joint density f(x, y) of X and Y can be factored into
two nonnegative functions, one solely depending on x and the other solely
depending on y, then X and Y are independent. We can use this factorization
approach to predict when X and Y are not independent.

Example 7.20. Let X and Y have the joint density

f(x, y) =

{
x + y for 0 < x < 1; 0 < y < 1

0 otherwise.
Are X and Y stochastically independent?

Answer: Notice that
f(x, y) = x + y

= x
(
1 +

y

x

)
.
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Thus, the joint density cannot be factored into two nonnegative functions
one depending on x and the other depending on y; and therefore X and Y

are not independent.

If X and Y are independent, then the random variables U = φ(X) and
V = ψ(Y ) are also independent. Here φ, ψ : IR → IR are some real valued
functions. From this comment, one can conclude that if X and Y are inde-
pendent, then the random variables eX and Y 3+Y 2+1 are also independent.

Definition 7.9. The random variables X and Y are said to be independent
and identically distributed (IID) if and only if they are independent and have
the same distribution.

Example 7.21. Let X and Y be two independent random variables with
identical probability density function given by

f(x) =

{
e−x for x > 0

0 elsewhere.

What is the probability density function of W = min{X, Y } ?

Answer: Let G(w) be the cumulative distribution function of W . Then

G(w) = P (W ≤ w)

= 1− P (W > w)

= 1− P (min{X, Y } > w)

= 1− P (X > w andY > w)

= 1− P (X > w) P (Y > w) (since X and Y are independent)

= 1−
(∫ ∞

w
e−x dx

) (∫ ∞

w
e−y dy

)

= 1−
(
e−w
)2

= 1− e−2w.

Thus, the probability density function of W is

g(w) =
d

dw
G(w) =

d

dw

(
1− e−2w

)
= 2 e−2w.

Hence

g(w) =

{
2 e−2w for w > 0

0 elsewhere.
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7.5. Review Exercises

1. Let X and Y be discrete random variables with joint probability density
function

f(x, y) =

{ 1
21 (x + y) for x = 1, 2, 3; y = 1, 2

0 otherwise.
What are the marginals of X and Y ?

2. Roll a pair of unbiased dice. Let X be the maximum of the two faces and
Y be the sum of the two faces. What is the joint density of X and Y ?

3. For what value of c is the real valued function

f(x, y) =

{
c (x + 2y) for x = 1, 2; y = 1, 2

0 otherwise

a joint density for some random variables X and Y ?

4. Let X and Y have the joint density

f(x, y) =

{
e−(x+y) for 0 ≤ x, y <∞

0 otherwise.

What is P (X ≥ Y ≥ 2) ?

5. If the random variable X is uniform on the interval from −1 to 1, and the
random variable Y is uniform on the interval from 0 to 1, what is the prob-
ability that the the quadratic equation t2 + 2Xt + Y = 0 has real solutions?
Assume X and Y are independent.

6. Let Y have a uniform distribution on the interval (0, 1), and let the
conditional density of X given Y = y be uniform on the interval from 0 to
√

y. What is the marginal density of X for 0 < x < 1?
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7. If the joint cumulative distribution of the random variables X and Y is

F (x, y) =






(1− e−x)(1− e−y) for x > 0, y > 0

0 otherwise,

what is the joint probability density function of the random variables X and
Y , and the P (1 < X < 3, 1 < Y < 2)?

8. If the random variables X and Y have the joint density

f(x, y) =






6
7 x for 1 ≤ x + y ≤ 2, x ≥ 0, y ≥ 0

0 otherwise,

what is the probability P (Y ≥ X2) ?

9. If the random variables X and Y have the joint density

f(x, y) =






6
7 x for 1 ≤ x + y ≤ 2, x ≥ 0, y ≥ 0

0 otherwise,

what is the probability P [max(X, Y ) > 1] ?

10. Let X and Y have the joint probability density function

f(x, y) =

{ 5
16 xy2 for 0 < x < y < 2

0 elsewhere.

What is the marginal density function of X where it is nonzero?

11. Let X and Y have the joint probability density function

f(x, y) =

{ 4x for 0 < x <
√

y < 1

0 elsewhere.

What is the marginal density function of Y , where nonzero?

12. A point (X, Y ) is chosen at random from a uniform distribution on the
circular disk of radius centered at the point (1, 1). For a given value of X = x

between 0 and 2 and for y in the appropriate domain, what is the conditional
density function for Y ?
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13. Let X and Y be continuous random variables with joint density function

f(x, y) =

{ 3
4 (2− x− y) for 0 < x, y < 2; 0 < x + y < 2

0 otherwise.

What is the conditional probability P (X < 1 |Y < 1) ?

14. Let X and Y be continuous random variables with joint density function

f(x, y) =

{ 12x for 0 < y < 2x < 1

0 otherwise.

What is the conditional density function of Y given X = x ?

15. Let X and Y be continuous random variables with joint density function

f(x, y) =

{ 24xy for x > 0, y > 0, 0 < x + y < 1

0 otherwise.

What is the conditional probability P
(
X < 1

2 |Y = 1
4

)
?

16. Let X and Y be two independent random variables with identical prob-
ability density function given by

f(x) =

{
e−x for x > 0

0 elsewhere.

What is the probability density function of W = max{X, Y } ?

17. Let X and Y be two independent random variables with identical prob-
ability density function given by

f(x) =






3 x2

θ3 for 0 ≤ x ≤ θ

0 elsewhere,

for some θ > 0. What is the probability density function of W = min{X, Y }?

18. Ron and Glenna agree to meet between 5 P.M. and 6 P.M. Suppose
that each of them arrive at a time distributed uniformly at random in this
time interval, independent of the other. Each will wait for the other at most
10 minutes (and if other does not show up they will leave). What is the
probability that they actually go out?
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19. Let X and Y be two independent random variables distributed uniformly
on the interval [0, 1]. What is the probability of the event Y ≥ 1

2 given that
Y ≥ 1− 2X?

20. Let X and Y have the joint density

f(x, y) =

{ 8xy for 0 < y < x < 1

0 otherwise.

What is P (X + Y > 1) ?

21. Let X and Y be continuous random variables with joint density function

f(x, y) =

{ 2 for 0 ≤ y ≤ x < 1

0 otherwise.

Are X and Y stochastically independent?

22. Let X and Y be continuous random variables with joint density function

f(x, y) =

{ 2x for 0 < x, y < 1

0 otherwise.

Are X and Y stochastically independent?

23. A bus and a passenger arrive at a bus stop at a uniformly distributed
time over the interval 0 to 1 hour. Assume the arrival times of the bus and
passenger are independent of one another and that the passenger will wait
up to 15 minutes for the bus to arrive. What is the probability that the
passenger will catch the bus?

24. Let X and Y be continuous random variables with joint density function

f(x, y) =

{ 4xy for 0 ≤ x, y ≤ 1

0 otherwise.

What is the probability of the event X ≤ 1
2 given that Y ≥ 3

4?

25. Let X and Y be continuous random variables with joint density function

f(x, y) =

{ 1
2 for 0 ≤ x ≤ y ≤ 2

0 otherwise.

What is the probability of the event X ≤ 1
2 given that Y = 1?
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26. If the joint density of the random variables X and Y is

f(x, y) =

{ 1 if 0 ≤ x ≤ y ≤ 1
1
2 if 1 ≤ x ≤ 2, 0 ≤ y ≤ 1
0 otherwise,

what is the probability of the event
(
X ≤ 3

2 , Y ≤ 1
2

)
?

27. If the joint density of the random variables X and Y is

f(x, y) =






[
emin{x,y} − 1

]
e−(x+y) if 0 < x, y <∞

0 otherwise,

then what is the marginal density function of X, where nonzero?
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Chapter 8

PRODUCT MOMENTS
OF

BIVARIATE
RANDOM VARIABLES

In this chapter, we define various product moments of a bivariate random
variable. The main concept we introduce in this chapter is the notion of
covariance between two random variables. Using this notion, we study the
statistical dependence of two random variables.

8.1. Covariance of Bivariate Random Variables

First, we define the notion of product moment of two random variables
and then using this product moment, we give the definition of covariance
between two random variables.

Definition 8.1. Let X and Y be any two random variables with joint density
function f(x, y). The product moment of X and Y , denoted by E(XY ), is
defined as

E(XY ) =






∑

x∈RX

∑

y∈RY

xy f(x, y) if X and Y are discrete

∫∞
−∞
∫∞
−∞ xy f(x, y) dx dy if X and Y are continuous.

Here, RX and RY represent the range spaces of X and Y respectively.

Definition 8.2. Let X and Y be any two random variables with joint density
function f(x, y). The covariance between X and Y , denoted by Cov(X, Y )
(or σXY ), is defined as

Cov(X, Y ) = E( (X − µX) (Y − µY ) ),
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where µX and µY are mean of X and Y , respectively.

Notice that the covariance of X and Y is really the product moment of
X − µX and Y − µY . Further, the mean of µX is given by

µX = E(X) =
∫ ∞

−∞
x f1(x) dx =

∫ ∞

−∞

∫ ∞

−∞
x f(x, y) dx dy,

and similarly the mean of Y is given by

µY = E(Y ) =
∫ ∞

−∞
y f2(y) dy =

∫ ∞

−∞

∫ ∞

−∞
y f(x, y) dy dx.

Theorem 8.1. Let X and Y be any two random variables. Then

Cov(X, Y ) = E(XY )− E(X) E(Y ).

Proof:

Cov(X, Y ) = E((X − µX) (Y − µY ))

= E(XY − µX Y − µY X + µX µY )

= E(XY )− µX E(Y )− µY E(X) + µX µY

= E(XY )− µX µY − µY µX + µX µY

= E(XY )− µX µY

= E(XY )− E(X) E(Y ).

Corollary 8.1. Cov(X, X) = σ2
X .

Proof:
Cov(X, X) = E(XX)− E(X) E(X)

= E(X2)− µ2
X

= V ar(X)

= σ2
X .

Example 8.1. Let X and Y be discrete random variables with joint density

f(x, y) =

{ x+2y
18 for x = 1, 2; y = 1, 2

0 elsewhere.

What is the covariance σXY between X and Y .



Probability and Mathematical Statistics 215

Answer: The marginal of X is

f1(x) =
2∑

y=1

x + 2y

18
=

1
18

(2x + 6).

Hence the expected value of X is

E(X) =
2∑

x=1

x f1(x)

= 1 f1(1) + 2f1(2)

=
8
18

+ 2
10
18

=
28
18

.

Similarly, the marginal of Y is

f2(y) =
2∑

x=1

x + 2y

18
=

1
18

(3 + 4y).

Hence the expected value of Y is

E(Y ) =
2∑

y=1

y f2(y)

= 1 f2(1) + 2f2(2)

=
7
18

+ 2
11
18

=
29
18

.

Further, the product moment of X and Y is given by

E(XY ) =
2∑

x=1

2∑

y=1

x y f(x, y)

= f(1, 1) + 2 f(1, 2) + 2 f(2, 1) + 4 f(2, 2)

=
3
18

+ 2
5
18

+ 2
4
18

+ 4
6
18

=
3 + 10 + 8 + 24

18

=
45
18

.
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Hence, the covariance between X and Y is given by

Cov(X, Y ) = E(XY )− E(X) E(Y )

=
45
18
−
(

28
18

) (
29
18

)

=
(45) (18)− (28) (29)

(18) (18)

=
810− 812

324

= − 2
324

= −0.00617.

Remark 8.1. For an arbitrary random variable, the product moment and
covariance may or may not exist. Further, note that unlike variance, the
covariance between two random variables may be negative.

Example 8.2. Let X and Y have the joint density function

f(x, y) =

{
x + y if 0 < x, y < 1

0 elsewhere .

What is the covariance between X and Y ?

Answer: The marginal density of X is

f1(x) =
∫ 1

0
(x + y) dy

=
[
x y +

y2

2

]y=1

y=0

= x +
1
2
.

Thus, the expected value of X is given by

E(X) =
∫ 1

0
x f1(x) dx

=
∫ 1

0
x (x +

1
2
) dx

=
[

x3

3
+

x2

4

]1

0

=
7
12

.
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Similarly (or using the fact that the density is symmetric in x and y), we get

E(Y ) =
7
12

.

Now, we compute the product moment of X and Y .

E(XY ) =
∫ 1

0

∫ 1

0
x y(x + y) dx dy

=
∫ 1

0

∫ 1

0
(x2 y + x y2) dx dy

=
∫ 1

0

[
x3 y

3
+

x2 y2

2

]x=1

x=0

dy

=
∫ 1

0

(
y

3
+

y2

2

)
dy

=
[

y2

6
+

y3

6

]1

0

dy

=
1
6

+
1
6

=
4
12

.

Hence the covariance between X and Y is given by

Cov(X, Y ) = E(XY )− E(X) E(Y )

=
4
12
−
(

7
12

) (
7
12

)

=
48− 49

144

= − 1
144

.

Example 8.3. Let X and Y be continuous random variables with joint
density function

f(x, y) =

{ 2 if 0 < y < 1− x; 0 < x < 1

0 elsewhere .

What is the covariance between X and Y ?

Answer: The marginal density of X is given by

f1(x) =
∫ 1−x

0
2 dy = 2 (1− x).
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Hence the expected value of X is

µX = E(X) =
∫ 1

0
x f1(x) dx =

∫ 1

o
2 (1− x) dx =

1
3
.

Similarly, the marginal of Y is

f2(y) =
∫ 1−y

0
2 dx = 2 (1− y).

Hence the expected value of Y is

µY = E(Y ) =
∫ 1

0
y f2(y) dy =

∫ 1

o
2 (1− y) dy =

1
3
.

The product moment of X and Y is given by

E(XY ) =
∫ 1

0

∫ 1−x

0
x y f(x, y) dy dx

=
∫ 1

0

∫ 1−x

0
x y 2 dy dx

= 2
∫ 1

0
x

[
y2

2

]1−x

0

dx

= 2
1
2

∫ 1

0
x (1− x)2 dx

=
∫ 1

0

(
x− 2x2 + x3

)
dx

=
[
1
2

x2 − 2
3

x3 +
1
4

x4

]1

0

=
1
12

.

Therefore, the covariance between X and Y is given by
Cov(X, Y ) = E(XY )− E(X) E(Y )

=
1
12
− 1

9

=
3
36
− 4

36
= − 1

36
.
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Theorem 8.2. If X and Y are any two random variables and a, b, c, and d

are real constants, then

Cov(a X + b, c Y + d) = a c Cov(X, Y ).

Proof:

Cov(a X + b, c Y + d)

= E ((aX + b)(cY + d))− E(aX + b) E(cY + d)

= E (acXY + adX + bcY + bd)− (aE(X) + b) (cE(Y ) + d)

= ac E(XY ) + ad E(X) + bc E(Y ) + bd

− [ac E(X) E(Y ) + ad E(X) + bc E(Y ) + bd]

= ac [E(XY )− E(X) E(Y )]

= ac Cov(X, Y ).

Example 8.4. If the product moment of X and Y is 3 and the mean of
X and Y are both equal to 2, then what is the covariance of the random
variables 2X + 10 and − 5

2 Y + 3 ?

Answer: Since E(XY ) = 3 and E(X) = 2 = E(Y ), the covariance of X

and Y is given by

Cov(X, Y ) = E(XY )− E(X) E(Y ) = 3− 4 = −1.

Then the covariance of 2X + 10 and − 5
2 Y + 3 is given by

Cov

(
2X + 10, −5

2
Y + 3
)

= 2
(
−5

2

)
Cov(X, Y )

= (−5) (−1)

= 5.

Remark 8.2. Notice that the Theorem 8.2 can be furthered improved. That
is, if X, Y , Z are three random variables, then

Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)

and
Cov(X, Y + Z) = Cov(X, Y ) + Cov(X, Z).
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The first formula can be established as follows. Consider

Cov(X + Y, Z) = E((X + Y )Z)− E(X + Y ) E(Z)

= E(XZ + Y Z)− E(X)E(Z)− E(Y )E(Z)

= E(XZ)− E(X)E(Z) + E(Y Z)− E(Y )E(Z)

= Cov(X, Z) + Cov(Y, Z).

8.2. Independence of Random Variables

In this section, we study the effect of independence on the product mo-
ment (and hence on the covariance). We begin with a simple theorem.

Theorem 8.3. If X and Y are independent random variables, then

E(XY ) = E(X) E(Y ).

Proof: Recall that X and Y are independent if and only if

f(x, y) = f1(x) f2(y).

Let us assume that X and Y are continuous. Therefore

E(XY ) =
∫ ∞

−∞

∫ ∞

−∞
x y f(x, y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
x y f1(x) f2(y) dx dy

=
(∫ ∞

−∞
x f1(x) dx

) (∫ ∞

−∞
y f2(y) dy

)

= E(X) E(Y ).

If X and Y are discrete, then replace the integrals by appropriate sums to
prove the same result.

Example 8.5. Let X and Y be two independent random variables with
respective density functions:

f(x) =

{
3 x2 if 0 < x < 1

0 otherwise

and

g(y) =

{
4 y3 if 0 < y < 1

0 otherwise .
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What is E
(

X
Y

)
?

Answer: Since X and Y are independent, the joint density of X and Y is
given by

h(x, y) = f(x) g(y).

Therefore
E

(
X

Y

)
=
∫ ∞

−∞

∫ ∞

−∞

x

y
h(x, y) dx dy

=
∫ 1

0

∫ 1

0

x

y
f(x) g(y) dx dy

=
∫ 1

0

∫ 1

0

x

y
3x2 4y3 dx dy

=
(∫ 1

0
3x3 dx

) (∫ 1

0
4y2 dy

)

=
(

3
4

) (
4
3

)
= 1.

Remark 8.3. The independence of X and Y does not imply E
(

X
Y

)
= E(X)

E(Y )

but only implies E
(

X
Y

)
= E(X) E

(
Y −1
)
. Further, note that E

(
Y −1
)

is not
equal to 1

E(Y ) .

Theorem 8.4. If X and Y are independent random variables, then the
covariance between X and Y is always zero, that is

Cov(X, Y ) = 0.

Proof: Suppose X and Y are independent, then by Theorem 8.3, we have
E(XY ) = E(X) E(Y ). Consider

Cov(X, Y ) = E(XY )− E(X) E(Y )

= E(X) E(Y )− E(X) E(Y )

= 0.

Example 8.6. Let the random variables X and Y have the joint density

f(x, y) =

{ 1
4 if (x, y) ∈ { (0, 1), (0,−1), (1, 0), (−1, 0) }

0 otherwise.

What is the covariance of X and Y ? Are the random variables X and Y

independent?
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Answer: The joint density of X and Y are shown in the following table with
the marginals f1(x) and f2(y).

(x, y) −1 0 1 f2(y)

−1 0 1
4 0 1

4

0 1
4 0 1

4
2
4

1 0 1
4 0 1

4

f1(x) 1
4

2
4

1
4

From this table, we see that

0 = f(0, 0) += f1(0) f2(0) =
(

2
4

) (
2
4

)
=

1
4

and thus

f(x, y) += f1(x) f2(y)

for all (x, y) is the range space of the joint variable (X, Y ). Therefore X and
Y are not independent.

Next, we compute the covariance between X and Y . For this we need
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E(X), E(Y ) and E(XY ). The expected value of X is

E(X) =
1∑

x=−1

xf1(x)

= (−1) f1(−1) + (0)f1(0) + (1) f1(1)

= −1
4

+ 0 +
1
4

= 0.

Similarly, the expected value of Y is

E(Y ) =
1∑

y=−1

yf2(y)

= (−1) f2(−1) + (0)f2(0) + (1) f2(1)

= −1
4

+ 0 +
1
4

= 0.

The product moment of X and Y is given by

E(XY ) =
1∑

x=−1

1∑

y=−1

x y f(x, y)

= (1) f(−1,−1) + (0) f(−1, 0) + (−1) f(−1, 1)

+ (0) f(0,−1) + (0) f(0, 0) + (0) f(0, 1)

+ (−1) f(1,−1) + (0) f(1, 0) + (1) f(1, 1)

= 0.

Hence, the covariance between X and Y is given by

Cov(X, Y ) = E(XY )− E(X) E(Y ) = 0.

Remark 8.4. This example shows that if the covariance of X and Y is zero
that does not mean the random variables are independent. However, we know
from Theorem 8.4 that if X and Y are independent, then the Cov(X, Y ) is
always zero.
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8.3. Variance of the Linear Combination of Random Variables

Given two random variables, X and Y , we determine the variance of
their linear combination, that is aX + bY .

Theorem 8.5. Let X and Y be any two random variables and let a and b

be any two real numbers. Then

V ar(aX + bY ) = a2 V ar(X) + b2 V ar(Y ) + 2 a b Cov(X, Y ).

Proof:

V ar(aX + bY )

= E
(
[aX + bY − E(aX + bY )]2

)

= E
(
[aX + bY − a E(X)− b E(Y )]2

)

= E
(
[a (X − µX) + b (Y − µY )]2

)

= E
(
a2 (X − µX)2 + b2 (Y − µY )2 + 2 a b (X − µX) (Y − µY )

)

= a2 E
(
(X − µX)2

)
+ b2 E

(
(X − µX)2

)
+ 2 a b E((X − µX) (Y − µY ))

= a2 V ar(X) + b2 V ar(Y ) + 2 a b Cov(X, Y ).

Example 8.7. If V ar(X + Y ) = 3, V ar(X − Y ) = 1, E(X) = 1 and
E(Y ) = 2, then what is E(XY ) ?

Answer:
V ar(X + Y ) = σ2

X + σ2
Y + 2 Cov(X, Y ),

V ar(X − Y ) = σ2
X + σ2

Y − 2 Cov(X, Y ).

Hence, we get

Cov(X, Y ) =
1
4

[ V ar(X + Y )− V ar(X − Y ) ]

=
1
4

[3− 1]

=
1
2
.

Therefore, the product moment of X and Y is given by

E(XY ) = Cov(X, Y ) + E(X) E(Y )

=
1
2

+ (1) (2)

=
5
2
.
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Example 8.8. Let X and Y be random variables with V ar(X) = 4,
V ar(Y ) = 9 and V ar(X − Y ) = 16. What is Cov(X, Y ) ?

Answer:

V ar(X − Y ) = V ar(X) + V ar(Y )− 2 Cov(X, Y )

16 = 4 + 9− 2 Cov(X, Y ).

Hence
Cov(X, Y ) = −3

2
.

Remark 8.5. The Theorem 8.5 can be extended to three or more random
variables. In case of three random variables X, Y, Z, we have

V ar(X + Y + Z)

= V ar(X) + V ar(Y ) + V ar(Z)

+ 2Cov(X, Y ) + 2Cov(Y, Z) + 2Cov(Z, X).

To see this consider

V ar(X + Y + Z)

= V ar((X + Y ) + Z)

= V ar(X + Y ) + V ar(Z) + 2Cov(X + Y, Z)

= V ar(X + Y ) + V ar(Z) + 2Cov(X, Z) + 2Cov(Y, Z)

= V ar(X) + V ar(Y ) + 2Cov(X, Y )

+ V ar(Z) + 2Cov(X, Z) + 2Cov(Y, Z)

= V ar(X) + V ar(Y ) + V ar(Z)

+ 2Cov(X, Y ) + 2Cov(Y, Z) + 2Cov(Z, X).

Theorem 8.6. If X and Y are independent random variables with E(X) =
0 = E(Y ), then

V ar(XY ) = V ar(X) V ar(Y ).

Proof:

V ar(XY ) = E
(
(XY )2

)
− (E(X) E(Y ))2

= E
(
(XY )2

)

= E
(
X2 Y 2
)

= E
(
X2
)

E
(
Y 2
)

(by independence of X and Y )

= V ar(X) V ar(Y ).
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Example 8.9. Let X and Y be independent random variables, each with
density

f(x) =

{ 1
2θ for −θ < x < θ

0 otherwise.

If the V ar(XY ) = 64
9 , then what is the value of θ ?

Answer:

E(X) =
∫ θ

−θ

1
2θ

x dx =
1
2θ

[
x2

2

]θ

−θ

= 0.

Since Y has the same density, we conclude that E(Y ) = 0. Hence

64
9

= V ar(XY )

= V ar(X) V ar(Y )

=

(∫ θ

−θ

1
2θ

x2 dx

) (∫ θ

−θ

1
2θ

y2 dy

)

=
(
θ2

3

) (
θ2

3

)

=
θ4

9
.

Hence, we obtain
θ4 = 64 or θ = 2

√
2.

8.4. Correlation and Independence

The functional dependency of the random variable Y on the random
variable X can be obtained by examining the correlation coefficient. The
definition of the correlation coefficient ρ between X and Y is given below.

Definition 8.3. Let X and Y be two random variables with variances σ2
X

and σ2
Y , respectively. Let the covariance of X and Y be Cov(X, Y ). Then

the correlation coefficient ρ between X and Y is given by

ρ =
Cov(X, Y )
σX σY

.

Theorem 8.7. If X and Y are independent, the correlation coefficient be-
tween X and Y is zero.
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Proof:
ρ =

Cov(X, Y )
σX σY

=
0

σX σY

= 0.

Remark 8.4. The converse of this theorem is not true. If the correlation
coefficient of X and Y is zero, then X and Y are said to be uncorrelated.

Lemma 8.1. If X( and Y ( are the standardizations of the random variables
X and Y , respectively, the correlation coefficient between X( and Y ( is equal
to the correlation coefficient between X and Y .

Proof: Let ρ( be the correlation coefficient between X( and Y (. Further,
let ρ denote the correlation coefficient between X and Y . We will show that
ρ( = ρ. Consider

ρ( =
Cov (X(, Y ()
σX* σY *

= Cov (X(, Y ()

= Cov

(
X − µX

σX
,

Y − µY

σY

)

=
1

σX σY
Cov (X − µX , Y − µY )

=
Cov (X, Y )
σX σY

= ρ.

This lemma states that the value of the correlation coefficient between
two random variables does not change by standardization of them.

Theorem 8.8. For any random variables X and Y , the correlation coefficient
ρ satisfies

−1 ≤ ρ ≤ 1,

and ρ = 1 or ρ = −1 implies that the random variable Y = a X + b, where a

and b are arbitrary real constants with a += 0.

Proof: Let µX be the mean of X and µY be the mean of Y , and σ2
X and σ2

Y

be the variances of X and Y , respectively. Further, let

X∗ =
X − µX

σX
and Y ∗ =

Y − µY

σY
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be the standardization of X and Y , respectively. Then

µX∗ = 0 and σ2
X∗ = 1,

and
µY ∗ = 0 and σ2

Y ∗ = 1.

Thus
V ar(X∗ − Y ∗) = V ar(X∗) + V ar(Y ∗)− 2Cov(X∗, Y ∗)

= σ2
X∗ + σ2

Y ∗ − 2 ρ∗ σX∗ σY ∗

= 1 + 1− 2ρ∗

= 1 + 1− 2ρ (by Lemma 8.1)

= 2(1− ρ).

Since the variance of a random variable is always positive, we get

2 (1− ρ) ≥ 0

which is
ρ ≤ 1.

By a similar argument, using V ar(X∗ + Y ∗), one can show that −1 ≤ ρ.
Hence, we have −1 ≤ ρ ≤ 1. Now, we show that if ρ = 1 or ρ = −1, then Y

and X are related through an affine transformation. Consider the case ρ = 1,
then

V ar(X∗ − Y ∗) = 0.

But if the variance of a random variable is 0, then all the probability mass is
concentrated at a point (that is, the distribution of the corresponding random
variable is degenerate). Thus V ar(X∗−Y ∗) = 0 implies X∗−Y ∗ takes only
one value. But E [X∗ − Y ∗] = 0. Thus, we get

X∗ − Y ∗ ≡ 0

or
X∗ ≡ Y ∗.

Hence
X − µX

σX
=

Y − µY

σY
.

Solving this for Y in terms of X, we get

Y = a X + b
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where
a =

σY

σX
and b = µY − a µX .

Thus if ρ = 1, then Y is a linear in X. Similarly, we can show for the case
ρ = −1, the random variables X and Y are linearly related. This completes
the proof of the theorem.

8.5. Moment Generating Functions

Similar to the moment generating function for the univariate case, one
can define the moment generating function for the bivariate case to com-
pute the various product moments. The moment generating function for the
bivariate case is defined as follows:

Definition 8.4. Let X and Y be two random variables with joint density
function f(x, y). A real valued function M : IR2 → IR defined by

M(s, t) = E
(
esX+tY

)

is called the joint moment generating function of X and Y if this expected
value exists for all s is some interval −h < s < h and for all t is some interval
−k < t < k for some positive h and k.

It is easy to see from this definition that

M(s, 0) = E
(
esX
)

and
M(0, t) = E

(
etY
)
.

From this we see that

E(Xk) =
∂kM(s, t)
∂sk

∣∣∣∣
(0,0)

, E(Y k) =
∂kM(s, t)
∂tk

∣∣∣∣
(0,0)

,

for k = 1, 2, 3, 4, ...; and

E(XY ) =
∂2M(s, t)
∂s ∂t

∣∣∣∣
(0,0)

.

Example 8.10. Let the random variables X and Y have the joint density

f(x, y) =

{
e−y for 0 < x < y <∞

0 otherwise.
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What is the joint moment generating function for X and Y ?

Answer: The joint moment generating function of X and Y is given by

M(s, t) = E
(
esX+tY

)

=
∫ ∞

0

∫ ∞

0
esx+ty f(x, y) dy dx

=
∫ ∞

0

∫ ∞

x
esx+ty e−y dy dx

=
∫ ∞

0

[ ∫ ∞

x
esx+ty−y dy

]
dx

=
1

(1− s− t) (1− t)
, provided s + t < 1 and t < 1.

Example 8.11. If the joint moment generating function of the random
variables X and Y is

M(s, t) = e(s+3t+2s2+18t2+12st)

what is the covariance of X and Y ?

Answer:
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M(s, t) = e(s+3t+2s2+18t2+12st)

∂M

∂s
= (1 + 4s + 12t) M(s, t)

∂M

∂s

∣∣∣∣
(0,0)

= 1 M(0, 0)

= 1.

∂M

∂t
= (3 + 36t + 12s) M(s, t)

∂M

∂t

∣∣∣∣
(0,0)

= 3 M(0, 0)

= 3.

Hence
µX = 1 and µY = 3.

Now we compute the product moment of X and Y .

∂2M(s, t)
∂s ∂t

=
∂

∂t

(
∂M

∂s

)

=
∂

∂t
(M(s, t) (1 + 4s + 12t))

= (1 + 4s + 12t)
∂M

∂t
+ M(s, t) (12).

Therefore
∂2M(s, t)
∂s ∂t

∣∣∣∣
(0,0)

= 1 (3) + 1 (12).

Thus
E(XY ) = 15

and the covariance of X and Y is given by

Cov(X, Y ) = E(XY )− E(X) E(Y )

= 15− (3) (1)

= 12.

Theorem 8.9. If X and Y are independent then

MaX+bY (t) = MX(at) MY (bt),
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where a and b real parameters.

Proof: Let W = aX + bY . Hence

MaX+bY (t) = MW (t)

= E
(
etW
)

= E
(
et(aX+bY )

)

= E
(
etaX etbY

)

= E
(
etaX
)
E
(
etbY
)

(by Theorem 8.3)

= MX(at) MY (bt).

This theorem is very powerful. It helps us to find the distribution of a
linear combination of independent random variables. The following examples
illustrate how one can use this theorem to determine distribution of a linear
combination.

Example 8.12. Suppose the random variable X is normal with mean 2 and
standard deviation 3 and the random variable Y is also normal with mean
0 and standard deviation 4. If X and Y are independent, then what is the
probability distribution of the random variable X + Y ?

Answer: Since X ∼ N(2, 9), the moment generating function of X is given
by

MX(t) = eµt+ 1
2σ

2t2 = e2t+ 9
2 t2 .

Similarly, since Y ∼ N(0, 16),

MY (t) = eµt+ 1
2σ

2t2 = e
16
2 t2 .

Since X and Y are independent, the moment generating function of X + Y

is given by
MX+Y (t) = MX(t) MY (t)

= e2t+ 9
2 t2 e

16
2 t2

= e2t+ 25
2 t2 .

Hence X +Y ∼ N(2, 25). Thus, X +Y has a normal distribution with mean
2 and variance 25. From this information we can find the probability density
function of W = X + Y as

f(w) =
1√
50π

e−
1
2 (w−2

5 )2

, −∞ < w <∞.
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Remark 8.6. In fact if X and Y are independent normal random variables
with means µX and µY and variances σ2

X and σ2
Y , respectively, then aX +bY

is also normal with mean aµX + bµY and variance a2σ2
X + b2σ2

Y .

Example 8.13. Let X and Y be two independent and identically distributed
random variables. If their common distribution is chi-square with one degree
of freedom, then what is the distribution of X + Y ? What is the moment
generating function of X − Y ?

Answer: Since X and Y are both χ2(1), the moment generating functions
are

MX(t) =
1√

1− 2t

and
MY (t) =

1√
1− 2t

.

Since, the random variables X and Y are independent, the moment generat-
ing function of X + Y is given by

MX+Y (t) = MX(t) MY (t)

=
1√

1− 2t

1√
1− 2t

=
1

(1− 2t) 2
2
.

Hence X +Y ∼ χ2(2). Thus, if X and Y are independent chi-square random
variables, then their sum is also a chi-square random variable.

Next, we show that X − Y is not a chi-square random variable, even if
X and Y are both chi-square.

MX−Y (t) = MX(t) MY (−t)

=
1√

1− 2t

1√
1 + 2t

=
1√

1− 4t2
.

This moment generating function does not correspond to the moment gener-
ating function of a chi-square random variable with any degree of freedoms.
Further, it is surprising that this moment generating function does not cor-
respond to that of any known distributions.

Remark 8.7. If X and Y are chi-square and independent random variables,
then their linear combination is not necessarily a chi-square random variable.
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Example 8.14. Let X and Y be two independent Bernoulli random variables
with parameter p. What is the distribution of X + Y ?

Answer: Since X and Y are Bernoulli with parameter p, their moment
generating functions are

MX(t) = (1− p) + pet MY (t) = (1− p) + pet.

Since, X and Y are independent, the moment generating function of their
sum is the product of their moment generating functions, that is

MX+Y (t) = MX(t) MY (t)

=
(
1− p + pet

) (
1− p + pet

)

=
(
1− p + pet

)2
.

Hence X + Y ∼ BIN(2, p). Thus the sum of two independent Bernoulli
random variable is a binomial random variable with parameter 2 and p.

8.6. Review Exercises

1. Suppose that X1 and X2 are random variables with zero mean and unit
variance. If the correlation coefficient of X1 and X2 is −0.5, then what is the
variance of Y =

∑2
k=1 k2Xk ?

2. If the joint density of the random variables X and Y is

f(x, y) =






1
8 if (x, y) ∈ { (x, 0), (0,−y) |x, y = −2,−1, 1, 2 }

0 otherwise,

what is the covariance of X and Y ? Are X and Y independent?

3. Suppose the random variables X and Y are independent and identically
distributed. Let Z = aX + Y . If the correlation coefficient between X and
Z is 1

3 , then what is the value of the constant a ?

4. Let X and Y be two independent random variables with chi-square distri-
bution with 2 degrees of freedom. What is the moment generating function
of the random variable 2X + 3Y ? If possible, what is the distribution of
2X + 3Y ?

5. Let X and Y be two independent random variables. If X ∼ BIN(n, p)
and Y ∼ BIN(m, p), then what is the distribution of X + Y ?
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6. Let X and Y be two independent random variables. If X and Y are
both standard normal, then what is the distribution of the random variable
1
2

(
X2 − Y 2

)
?

7. If the joint probability density function of X and Y is

f(x, y) =

{ 1 if 0 < x < 1; 0 < y < 1

0 elsewhere,

then what is the joint moment generating function of X and Y ?

8. Let the joint density function of X and Y be

f(x, y) =






1
36 if 1 ≤ x = y ≤ 6

2
36 if 1 ≤ x < y ≤ 6.

What is the correlation coefficient of X and Y ?

9. Suppose that X and Y are random variables with joint moment generating
function

M(s, t) =
(

1
4

es +
3
8

et +
3
8

)10

,

for all real s and t. What is the covariance of X and Y ?

10. Suppose that X and Y are random variables with joint density function

f(x, y) =






1
6π for x2

4 + y2

9 ≤ 1

0 for x2

4 + y2

9 > 1.

What is the covariance of X and Y ? Are X and Y independent?

11. Let X and Y be two random variables. Suppose E(X) = 1, E(Y ) = 2,
V ar(X) = 1, V ar(Y ) = 2, and Cov(X, Y ) = 1

2 . For what values of the
constants a and b, the random variable aX + bY , whose expected value is 3,
has minimum variance?

12. A box contains 5 white balls and 3 black balls. Draw 2 balls without
replacement. If X represents the number of white balls and Y represents the
number of black balls drawn, what is the covariance of X and Y ?

13. If X represents the number of 1’s and Y represents the number of 5’s in
three tosses of a fair six-sided die, what is the correlation between X and Y ?
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14. Let Y and Z be two random variables. If V ar(Y ) = 4, V ar(Z) = 16,
and Cov(Y, Z) = 2, then what is V ar(3Z − 2Y )?

15. Three random variables X1, X2, X3, have equal variances σ2 and coef-
ficient of correlation between X1 and X2 of ρ and between X1 and X3 and
between X2 and X3 of zero. What is the correlation between Y and Z where
Y = X1 + X2 and Z = X2 + X3 ?

16. If X and Y are two independent Bernoulli random variables with pa-
rameter p, then what is the joint moment generating function of X − Y ?

17. If X1, X2, ..., Xn are normal random variables with variance σ2 and
covariance between any pair of random variables ρσ2, what is the variance
of 1

n (X1 + X2 + · · · + Xn) ?

18. The coefficient of correlation between X and Y is 1
3 and σ2

X = a,
σ2

Y = 4a, and σ2
Z = 114 where Z = 3X − 4Y . What is the value of the

constant a ?

19. Let X and Y be independent random variables with E(X) = 1, E(Y ) =
2, and V ar(X) = V ar(Y ) = σ2. For what value of the constant k is the
expected value of the random variable k(X2 − Y 2) + Y 2 equals σ2?

20. Let X be a random variable with finite variance. If Y = 15 −X, then
what is the coefficient of correlation between the random variables X and
(X + Y )X ?

21. The mean of a normal random variable X is 10 and the variance is 12.
The mean of a normal random variable Y is −5 and the variance is 5. If
the covariance of X and Y is 4, then what is the probability of the event
X + Y > 5 ?
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Chapter 9

CONDITIONAL
EXPECTATION

OF
BIVARIATE

RANDOM VARIABLES

This chapter examines the conditional mean and conditional variance
associated with two random variables. The conditional mean is very useful
in Bayesian estimation of parameters with a square loss function. Further, the
notion of conditional mean sets the path for regression analysis in statistics.

9.1. Conditional Expected Values

Let X and Y be any two random variables with joint density f(x, y).
Recall that the conditional probability density of X, given the event Y = y,
is defined as

g(x/y) =
f(x, y)
f2(y)

, f2(y) > 0

where f2(y) is the marginal probability density of Y . Similarly, the condi-
tional probability density of Y , given the event X = x, is defined as

h(y/x) =
f(x, y)
f1(x)

, f1(x) > 0

where f1(x) is the marginal probability density of X.

Definition 9.1. The conditional mean of X given Y = y is defined as

µX|y = E (X | y) ,
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where

E (X | y) =






∑

x∈RX

x g(x/y) if X is discrete

∫∞
−∞ x g(x/y) dx if X is continuous.

Similarly, the conditional mean of Y given X = x is defined as

µY |x = E (Y |x) ,

where

E (Y |x) =






∑

y∈RY

y h(y/x) if Y is discrete

∫∞
−∞ y h(y/x) dy if Y is continuous.

Example 9.1. Let X and Y be discrete random variables with joint proba-
bility density function

f(x, y) =

{ 1
21 (x + y) for x = 1, 2, 3; y = 1, 2

0 otherwise.

What is the conditional mean of X given Y = y, that is E(X|y)?

Answer: To compute the conditional mean of X given Y = y, we need the
conditional density g(x/y) of X given Y = y. However, to find g(x/y), we
need to know the marginal of Y , that is f2(y). Thus, we begin with

f2(y) =
3∑

x=1

1
21

(x + y)

=
1
21

(6 + 3y).

Therefore, the conditional density of X given Y = y is given by

g(x/y) =
f(x, y)
f2(y)

=
x + y

6 + 3y
, x = 1, 2, 3.
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The conditional expected value of X given the event Y = y

E (X | y) =
∑

x∈RX

x g(x/y)

=
3∑

x=1

x
x + y

6 + 3y

=
1

6 + 3y

[
3∑

x=1

x2 + y
3∑

x=1

x

]

=
14 + 6y

6 + 3y
, y = 1, 2.

Remark 9.1. Note that the conditional mean of X given Y = y is dependent
only on y, that is E(X|y) is a function φ of y. In the above example, this
function φ is a rational function, namely φ(y) = 14+6y

6+3y .

Example 9.2. Let X and Y have the joint density function

f(x, y) =

{
x + y for 0 < x, y < 1

0 otherwise.
What is the conditional mean E

(
Y |X = 1

3

)
?

Answer:

f1(x) =
∫ 1

0
(x + y) dy

=
[
xy +

1
2

y2

]1

0

= x +
1
2
.
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h(y/x) =
f(x, y)
f1(x)

=
x + y

x + 1
2

.

E

(
Y |X =

1
3

)
=
∫ 1

0
y h(y/x) dy

=
∫ 1

0
y

x + y

x + 1
2

dy

=
∫ 1

0
y

1
3 + y

5
6

dy

=
6
5

∫ 1

0

(
1
3

y + y2

)
dy

=
6
5

[
1
6

y2 +
1
3

y3

]1

0

=
6
5

[
1
6

+
2
6

]

=
6
5

(
3
6

)

=
3
5
.

The mean of the random variable Y is a deterministic number. The
conditional mean of Y given X = x, that is E(Y |x), is a function φ(x) of
the variable x. Using this function, we form φ(X). This function φ(X) is a
random variable. Thus starting from the deterministic function E(Y |x), we
have formed the random variable E(Y |X) = φ(X). An important property
of conditional expectation is given by the following theorem.

Theorem 9.1. The expected value of the random variable E(Y |X) is equal
to the expected value of Y , that is

Ex

(
Ey|x (Y |X)

)
= Ey(Y ),
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where Ex(X) stands for the expectation of X with respect to the distribution
of X and Ey|x(Y |X) stands for the expected value of Y with respect to the
conditional density h(y/X).

Proof: We prove this theorem for continuous variables and leave the discrete
case to the reader.

Ex

(
Ey|x (Y |X)

)
= Ex

[∫ ∞

−∞
y h(y/X) dy

]

=
∫ ∞

−∞

(∫ ∞

−∞
y h(y/x) dy

)
f1(x) dx

=
∫ ∞

−∞

(∫ ∞

−∞
y h(y/x)f1(x) dy

)
dx

=
∫ ∞

−∞

(∫ ∞

−∞
h(y/x)f1(x) dx

)
y dy

=
∫ ∞

−∞

(∫ ∞

−∞
f(x, y) dx

)
y dy

=
∫ ∞

−∞
y f2(y) dy

= Ey(Y ).

Example 9.3. An insect lays Y number of eggs, where Y has a Poisson
distribution with parameter λ. If the probability of each egg surviving is p,
then on the average how many eggs will survive?

Answer: Let X denote the number of surviving eggs. Then, given that
Y = y (that is given that the insect has laid y eggs) the random variable X

has a binomial distribution with parameters y and p. Thus

X|Y ∼ BIN(Y, p)

Y ∼ POI(λ).

Therefore, the expected number of survivors is given by

Ex(X) = Ey

(
Ex|y (X|Y )

)

= Ey (p Y ) (since X|Y ∼ BIN(Y, p))

= p Ey (Y )

= p λ. (since Y ∼ POI(λ))

Definition 9.2. A random variable X is said to have a mixture distribution
if the distribution of X depends on a quantity which also has a distribution.
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Example 9.4. A fair coin is tossed. If a head occurs, 1 die is rolled; if a tail
occurs, 2 dice are rolled. Let Y be the total on the die or dice. What is the
expected value of Y ?

Answer: Let X denote the outcome of tossing a coin. Then X ∼ BER(p),
where the probability of success is p = 1

2 .

Ey(Y ) = Ex( Ey|x(Y |X) )

=
1
2

Ey|x(Y |X = 0) +
1
2

Ey|x(Y |X = 1)

=
1
2

(
1 + 2 + 3 + 4 + 5 + 6

6

)

+
1
2

(
2 + 6 + 12 + 20 + 30 + 42 + 40 + 36 + 30 + 22 + 12

36

)

=
1
2

(
126
36

+
252
36

)

=
378
72

= 5.25.

Note that the expected number of dots that show when 1 die is rolled is 126
36 ,

and the expected number of dots that show when 2 dice are rolled is 252
36 .

Theorem 9.2. Let X and Y be two random variables with mean µX and
µY , and standard deviation σX and σY , respectively. If the conditional
expectation of Y given X = x is linear in x, then

E(Y |X = x) = µY + ρ
σY

σX
(x− µX),

where ρ denotes the correlation coefficient of X and Y .

Proof: We assume that the random variables X and Y are continuous. If
they are discrete, the proof of the theorem follows exactly the same way by
replacing the integrals with summations. We are given that E(Y |X = x) is
linear in x, that is

E(Y |X = x) = a x + b, (9.0)

where a and b are two constants. Hence, from above we get

∫ ∞

−∞
y h(y/x) dy = a x + b
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which implies ∫ ∞

−∞
y

f(x, y)
f1(x)

dy = a x + b.

Multiplying both sides by f1(x), we get
∫ ∞

−∞
y f(x, y) dy = (a x + b) f1(x) (9.1)

Now integrating with respect to x, we get
∫ ∞

−∞

∫ ∞

−∞
y f(x, y) dy dx =

∫ ∞

−∞
(a x + b) f1(x) dx

This yields
µY = a µX + b. (9.2)

Now, we multiply (9.1) with x and then integrate the resulting expression
with respect to x to get

∫ ∞

−∞

∫ ∞

−∞
xy f(x, y) dy dx =

∫ ∞

−∞
(a x2 + bx) f1(x) dx.

From this we get
E(XY ) = a E

(
X2
)

+ b µX . (9.3)

Solving (9.2) and (9.3) for the unknown a and b, we get

a =
E(XY )− µX µY

σ2
X

=
σXY

σ2
X

=
σXY

σX σY

σY

σX

= ρ
σY

σX
.

Similarly, we get
b = µY + ρ

σY

σX
µX .

Letting a and b into (9.0) we obtain the asserted result and the proof of the
theorem is now complete.

Example 9.5. Suppose X and Y are random variables with E(Y |X = x) =
−x + 3 and E(X|Y = y) = − 1

4y + 5. What is the correlation coefficient of
X and Y ?
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Answer: From the Theorem 9.2, we get

µY + ρ
σY

σX
(x− µX) = −x + 3.

Therefore, equating the coefficients of x terms, we get

ρ
σY

σX
= −1. (9.4)

Similarly, since

µX + ρ
σX

σY
(y − µY ) = −1

4
y + 5

we have
ρ
σX

σY
= −1

4
. (9.5)

Multiplying (9.4) with (9.5), we get

ρ
σY

σX
ρ
σX

σY
= (−1)

(
−1

4

)

which is
ρ2 =

1
4
.

Solving this, we get

ρ = ±1
2
.

Since ρ σY
σX

= −1 and σY
σX

> 0, we get

ρ = −1
2
.

9.2. Conditional Variance

The variance of the probability density function f(y/x) is called the
conditional variance of Y given that X = x. This conditional variance is
defined as follows:

Definition 9.3. Let X and Y be two random variables with joint den-
sity f(x, y) and f(y/x) be the conditional density of Y given X = x. The
conditional variance of Y given X = x, denoted by V ar(Y |x), is defined as

V ar(Y |x) = E
(
Y 2 |x
)
− (E(Y |x))2 ,

where E(Y |x) denotes the conditional mean of Y given X = x.
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Example 9.6. Let X and Y be continuous random variables with joint
probability density function

f(x, y) =

{
e−y for 0 < x < y <∞

0 otherwise.

What is the conditional variance of Y given the knowledge that X = x?

Answer: The marginal density of f1(x) is given by

f1(x) =
∫ ∞

−∞
f(x, y) dy

=
∫ ∞

x
e−y dy

=
[
−e−y
]∞
x

= e−x.

Thus, the conditional density of Y given X = x is

h(y/x) =
f(x, y)
f1(x)

=
e−y

e−x

= e−(y−x) for y > x.

Thus, given X = x, Y has an exponential distribution with parameter θ = 1
and location parameter x. The conditional mean of Y given X = x is

E(Y |x) =
∫ ∞

−∞
y h(y/x) dy

=
∫ ∞

x
y e−(y−x) dy

=
∫ ∞

0
(z + x) e−z dz where z = y − x

= x

∫ ∞

0
e−z dz +

∫ ∞

0
z e−z dz

= xΓ(1) + Γ(2)

= x + 1.
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Similarly, we compute the second moment of the distribution h(y/x).

E(Y 2|x) =
∫ ∞

−∞
y2 h(y/x) dy

=
∫ ∞

x
y2 e−(y−x) dy

=
∫ ∞

0
(z + x)2 e−z dz where z = y − x

= x2

∫ ∞

0
e−z dz +

∫ ∞

0
z2 e−z dz + 2 x

∫ ∞

0
z e−z dz

= x2 Γ(1) + Γ(3) + 2xΓ(2)

= x2 + 2 + 2x

= (1 + x)2 + 1.

Therefore
V ar(Y |x) = E

(
Y 2|x
)
− [ E(Y |x) ]2

= (1 + x)2 + 1− (1 + x)2

= 1.

Remark 9.2. The variance of Y is 2. This can be seen as follows: Since, the
marginal of Y is given by f2(y) =

∫ y
0 e−y dx = y e−y, the expected value of Y

is E(Y ) =
∫∞
0 y2e−y dy = Γ(3) = 2, and E

(
Y 2
)

=
∫∞
0 y3e−y dy = Γ(4) = 6.

Thus, the variance of Y is V ar(Y ) = 6−4 = 2. However, given the knowledge
X = x, the variance of Y is 1. Thus, in a way the prior knowledge reduces
the variability (or the variance) of a random variable.

Next, we simply state the following theorem concerning the conditional
variance without proof.
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Theorem 9.3. Let X and Y be two random variables with mean µX and
µY , and standard deviation σX and σY , respectively. If the conditional
expectation of Y given X = x is linear in x, then

Ex (V ar(Y |X)) = (1− ρ2) V ar(Y ),

where ρ denotes the correlation coefficient of X and Y .

Example 9.7. Let E(Y |X = x) = 2x and V ar(Y |X = x) = 4x2, and let X

have a uniform distribution on the interval from 0 to 1. What is the variance
of Y ?

Answer: If E(Y |X = x) is linear function of x, then

E(Y |X = x) = µY + ρ
σY

σX
(x− µX)

and
Ex ( V ar(Y |X) ) = σ2

Y (1− ρ2).

We are given that
µY + ρ

σY

σX
(x− µX) = 2x.

Hence, equating the coefficient of x terms, we get

ρ
σY

σX
= 2

which is
ρ = 2

σX

σY
. (9.6)

Further, we are given that

V ar(Y |X = x) = 4x2

Since X ∼ UNIF (0, 1), we get the density of X to be f(x) = 1 on the
interval (0, 1) Therefore,

Ex ( V ar(Y |X) ) =
∫ ∞

−∞
V ar(Y |X = x) f(x) dx

=
∫ 1

0
4 x2 dx

= 4
[

x3

3

]1

0

=
4
3
.
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By Theorem 9.3,
4
3

= Ex ( V ar(Y |X) )

= σ2
Y

(
1− ρ2
)

= σ2
Y

(
1− 4

σ2
X

σ2
Y

)

= σ2
Y − 4σ2

X

Hence
σ2

Y =
4
3

+ 4σ2
X .

Since X ∼ UNIF (0, 1), the variance of X is given by σ2
X = 1

12 . Therefore,
the variance of Y is given by

σ2
Y =

4
3

+
4
12

=
16
12

+
4
12

=
20
12

=
5
3
.

Example 9.8. Let E(X|Y = y) = 3y and V ar(X|Y = y) = 2, and let Y

have density function

f(y) =

{
e−y if y > 0

0 otherwise.

What is the variance of X?

Answer: By Theorem 9.3, we get

V ar(X|Y = y) = σ2
X

(
1− ρ2
)

= 2 (9.7)

and
µX + ρ

σX

σY
(y − µY ) = 3y.

Thus
ρ = 3

σY

σX
.

Hence from (9.7), we get Ey (V ar(X|Y )) = 2 and thus

σ2
X

(
1− 9

σ2
Y

σ2
X

)
= 2

which is
σ2

X = 9σ2
Y + 2.
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Now, we compute the variance of Y . For this, we need E(Y ) and E
(
Y 2
)
.

E(Y ) =
∫ ∞

0
y f(y) dy

=
∫ ∞

0
y e−y dy

= Γ(2)

= 1.

Similarly

E
(
Y 2
)

=
∫ ∞

0
y2 f(y) dy

=
∫ ∞

0
y2 e−y dy

= Γ(3)

= 2.

Therefore

V ar(Y ) = E
(
Y 2
)
− [ E(Y ) ]2 = 2− 1 = 1.

Hence, the variance of X can be calculated as

σ2
X = 9σ2

Y + 2

= 9 (1) + 2

= 11.

Remark 9.3. Notice that, in Example 9.8, we calculated the variance of Y

directly using the form of f(y). It is easy to note that f(y) has the form of
an exponential density with parameter θ = 1, and therefore its variance is
the square of the parameter. This straightforward gives σ2

Y = 1.

9.3. Regression Curve and Scedastic Curve

One of the major goals in most statistical studies is to establish relation-
ships between two or more random variables. For example, a company would
like to know the relationship between the potential sales of a new product
in terms of its price. Historically, regression analysis was originated in the
works of Sir Francis Galton (1822-1911) but most of the theory of regression
analysis was developed by his student Sir Ronald Fisher (1890-1962).
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Definition 9.4. Let X and Y be two random variables with joint probability
density function f(x, y) and let h(y/x) is the conditional density of Y given
X = x. Then the conditional mean

E(Y |X = x) =
∫ ∞

−∞
y h(y/x) dy

is called the regression function of Y on X. The graph of this regression
function of Y on X is known as the regression curve of Y on X.

Example 9.9. Let X and Y be two random variables with joint density

f(x, y) =

{
x e−x(1+y) if x > 0; y > 0

0 otherwise.

What is the regression function of Y on X?

Answer: The marginal density f1(x) of X is

f1(x) =
∫ ∞

−∞
f(x, y) dy

=
∫ ∞

0
x e−x(1+y) dy

=
∫ ∞

0
x e−x e−xy dy

= x e−x

∫ ∞

0
e−xy dy

= x e−x

[
− 1

x
e−xy

]∞

0

= e−x.

The conditional density of Y given X = x is

h(y/x) =
f(x, y)
f1(x)

=
x e−x(1+y)

e−x

= x e−xy.
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The conditional mean of Y given that X = x is

E(Y |X = x) =
∫ ∞

−∞
y h(y/x) dy

=
∫ ∞

0
y x e−xy dy

=
1
x

∫ ∞

0
ze−z dz (where z = xy)

=
1
x
Γ(2)

=
1
x

.

Thus, the regression function (or equation) of Y on X is given by

E(Y |x) =
1
x

for 0 < x <∞.

Definition 9.4. Let X and Y be two random variables with joint probability
density function f(x, y) and let E(Y |X = x) be the regression function of Y

on X. If this regression function is linear, then E(Y |X = x) is called a linear
regression of Y on X. Otherwise, it is called nonlinear regression of Y on X.

Example 9.10. Given the regression lines E(Y |X = x) = x + 2 and
E(X|Y = y) = 1 + 1

2 y, what is the expected value of X?

Answer: Since the conditional expectation E(Y |X = x) is linear in x, we
get

µY + ρ
σY

σX
(x− µX) = x + 2.

Hence, equating the coefficients of x and constant terms, we get

ρ
σY

σX
= 1 (9.8)
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and
µY − ρ

σY

σX
µX = 2, (9.9)

respectively. Now, using (9.8) in (9.9), we get

µY − µX = 2. (9.10)

Similarly, since E(X|Y = y) is linear in y, we get

ρ
σX

σY
=

1
2

(9.11)

and
µX − ρ

σX

σY
µY = 1, (9.12)

Hence, letting (9.10) into (9.11) and simplifying, we get

2µX − µY = 2. (9.13)

Now adding (9.13) to (9.10), we see that

µX = 4.

Remark 9.4. In statistics, a linear regression usually means the conditional
expectation E (Y/x) is linear in the parameters, but not in x. Therefore,
E (Y/x) = α+ θx2 will be a linear model, where as E (Y/x) = αxθ is not a
linear regression model.

Definition 9.5. Let X and Y be two random variables with joint probability
density function f(x, y) and let h(y/x) is the conditional density of Y given
X = x. Then the conditional variance

V ar(Y |X = x) =
∫ ∞

−∞
y2 h(y/x) dy

is called the scedastic function of Y on X. The graph of this scedastic function
of Y on X is known as the scedastic curve of Y on X.

Scedastic curves and regression curves are used for constructing families
of bivariate probability density functions with specified marginals.



Probability and Mathematical Statistics 253

9.4. Review Exercises

1. Given the regression lines E(Y |X = x) = x+2 and E(X|Y = y) = 1+ 1
2 y,

what is expected value of Y ?

2. If the joint density of X and Y is

f(x, y) =






k if −1 < x < 1; x2 < y < 1

0 elsewhere ,

where k is a constant, what is E(Y |X = x) ?

3. Suppose the joint density of X and Y is defined by

f(x, y) =

{
10xy2 if 0 < x < y < 1

0 elsewhere.

What is E
(
X2|Y = y

)
?

4. Let X and Y joint density function

f(x, y) =

{
2e−2(x+y) if 0 < x < y <∞

0 elsewhere.

What is the expected value of Y , given X = x, for x > 0 ?

5. Let X and Y joint density function

f(x, y) =

{ 8xy if 0 < x < 1; 0 < y < x

0 elsewhere.

What is the regression curve y on x, that is, E (Y/X = x)?

6. Suppose X and Y are random variables with means µX and µY , respec-
tively; and E(Y |X = x) = − 1

3x + 10 and E(X|Y = y) = − 3
4y + 2. What are

the values of µX and µY ?

7. Let X and Y have joint density

f(x, y) =

{ 24
5 (x + y) for 0 ≤ 2y ≤ x ≤ 1

0 otherwise.

What is the conditional expectation of X given Y = y ?
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8. Let X and Y have joint density

f(x, y) =

{
c xy2 for 0 ≤ y ≤ 2x; 1 ≤ x ≤ 5

0 otherwise.

What is the conditional expectation of Y given X = x ?

9. Let X and Y have joint density

f(x, y) =

{
e−y for y ≥ x ≥ 0

0 otherwise.

What is the conditional expectation of X given Y = y ?

10. Let X and Y have joint density

f(x, y) =

{ 2 xy for 0 ≤ y ≤ 2x ≤ 2

0 otherwise.

What is the conditional expectation of Y given X = x ?

11. Let E(Y |X = x) = 2 + 5x, V ar(Y |X = x) = 3, and let X have the
density function

f(x) =

{ 1
4 x e−

x
2 if 0 < x <∞

0 otherwise.

What is the mean and variance of random variable Y ?

12. Let E(Y |X = x) = 2x and V ar(Y |X = x) = 4x2 + 3, and let X have
the density function

f(x) =






4√
π

x2 e−x2
for 0 ≤ x <∞

0 elsewhere.

What is the variance of Y ?

13. Let X and Y have joint density

f(x, y) =

{ 2 for 0 < y < 1− x; and 0 < x < 1

0 otherwise.

What is the conditional variance of Y given X = x ?
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14. Let X and Y have joint density

f(x, y) =

{ 4x for 0 < x <
√

y < 1

0 elsewhere.

What is the conditional variance of Y given X = x ?

15. Let X and Y have joint density

f(x, y) =

{ 6
7x for 1 ≤ x + y ≤ 2; x ≥ 0, y ≥ 0

0 elsewhere.

What is the conditional variance of X given Y = 3
2 ?

16. Let X and Y have joint density

f(x, y) =

{ 12x for 0 < y < 2x < 1

0 elsewhere.

What is the conditional variance of Y given X = 0.5 ?

17. Let the random variable W denote the number of students who take
business calculus each semester at the University of Louisville. If the random
variable W has a Poisson distribution with parameter λ equal to 300 and the
probability of each student passing the course is 3

5 , then on an average how
many students will pass the business calculus?

18. If the conditional density of Y given X = x is given by

f(y/x) =






(5
y

)
xy (1− x)5−y if y = 0, 1, 2, ..., 5

0 otherwise,

and the marginal density of X is

f1(x) =






4x3 if 0 < x < 1

0 otherwise,

then what is the conditional expectation of Y given the event X = x?

19. If the joint density of the random variables X and Y is

f(x, y) =






2+(2x−1)(2y−1)
2 if 0 < x, y < 1

0 otherwise,
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then what is the regression function of Y on X?

20. If the joint density of the random variables X and Y is

f(x, y) =






[
emin{x,y} − 1

]
e−(x+y) if 0 < x, y <∞

0 otherwise,

then what is the conditional expectation of Y given X = x?
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Chapter 10

TRANSFORMATION
OF

RANDOM VARIABLES
AND

THEIR DISTRIBUTIONS

In many statistical applications, given the probability distribution of
a univariate random variable X, one would like to know the probability
distribution of another univariate random variable Y = φ(X), where φ is
some known function. For example, if we know the probability distribution
of the random variable X, we would like know the distribution of Y = ln(X).
For univariate random variable X, some commonly used transformed random
variable Y of X are: Y = X2, Y = |X|, Y =

√
|X|, Y = ln(X), Y =

X−µ
σ , and Y =

(
X−µ
σ

)2
. Similarly for a bivariate random variable (X, Y ),

some of the most common transformations of X and Y are X + Y , XY , X
Y ,

min{X, Y }, max{X, Y } or
√

X2 + Y 2. In this chapter, we examine various
methods for finding the distribution of a transformed univariate or bivariate
random variable, when transformation and distribution of the variable are
known. First, we treat the univariate case. Then we treat the bivariate case.

We begin with an example for univariate discrete random variable.

Example 10.1. The probability density function of the random variable X

is shown in the table below.

x −2 −1 0 1 2 3 4

f(x) 1
10

2
10

1
10

1
10

1
10

2
10

2
10



Density Function of X

-2 -1 0 1 2 3 4

1/10

2/10

Density Function of Y = X

0 1 9 164

1/10

2/10

2

3/10
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What is the probability density function of the random variable Y = X2?

Answer: The space of the random variable X is RX = {−2,−1, 0, 1, 2, 3, 4}.
Then the space of the random variable Y is RY = {x2 | x ∈ RX}. Thus,
RY = {0, 1, 4, 9, 16}. Now we compute the probability density function g(y)
for y in RY .

g(0) = P (Y = 0) = P (X2 = 0) = P (X = 0)) =
1
10

g(1) = P (Y = 1) = P (X2 = 1) = P (X = −1) + P (X = 1) =
3
10

g(4) = P (Y = 4) = P (X2 = 4) = P (X = −2) + P (X = 2) =
2
10

g(9) = P (Y = 9) = P (X2 = 9) = P (X = 3) =
2
10

g(16) = P (Y = 16) = P (X2 = 16) = P (X = 4) =
2
10

.

We summarize the distribution of Y in the following table.

y 0 1 4 9 16

g(y) 1
10

3
10

2
10

2
10

2
10

Example 10.2. The probability density function of the random variable X

is shown in the table below.

x 1 2 3 4 5 6

f(x) 1
6

1
6

1
6

1
6

1
6

1
6

What is the probability density function of the random variable Y = 2X +1?



1/6

1 2 3 4 5 6

Density Function of X

1/6

3 5 7 9 11 13

Density Function of Y = 2X+1
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Answer: The space of the random variable X is RX = {1, 2, 3, 4, 5, 6}.
Then the space of the random variable Y is RY = {2x + 1 | x ∈ RX}. Thus,
RY = {3, 5, 7, 9, 11, 13}. Next we compute the probability density function
g(y) for y in RY . The pdf g(y) is given by

g(3) = P (Y = 3) = P (2X + 1 = 3) = P (X = 1)) =
1
6

g(5) = P (Y = 5) = P (2X + 1 = 5) = P (X = 2)) =
1
6

g(7) = P (Y = 7) = P (2X + 1 = 7) = P (X = 3)) =
1
6

g(9) = P (Y = 9) = P (2X + 1 = 9) = P (X = 4)) =
1
6

g(11) = P (Y = 11) = P (2X + 1 = 11) = P (X = 5)) =
1
6

g(13) = P (Y = 13) = P (2X + 1 = 13) = P (X = 6)) =
1
6
.

We summarize the distribution of Y in the following table.

y 3 5 7 9 11 13

g(y) 1
6

1
6

1
6

1
6

1
6

1
6

The distribution of X and 2X + 1 are illustrated below.

In Example 10.1, we computed the distribution (that is, the proba-
bility density function) of transformed random variable Y = φ(X), where
φ(x) = x2. This transformation is not either increasing or decreasing (that
is, monotonic) in the space, RX , of the random variable X. Therefore, the
distribution of Y turn out to be quite different from that of X. In Example
10.2, the form of distribution of the transform random variable Y = φ(X),
where φ(x) = 2x + 1, is essentially same. This is mainly due to the fact that
φ(x) = 2x + 1 is monotonic in RX .
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In this chapter, we shall examine the probability density function of trans-
formed random variables by knowing the density functions of the original
random variables. There are several methods for finding the probability den-
sity function of a transformed random variable. Some of these methods are:

(1) distribution function method

(2) transformation method

(3) convolution method, and

(4) moment generating function method.

Among these four methods, the transformation method is the most useful one.
The convolution method is a special case of this method. The transformation
method is derived using the distribution function method.

10.1. Distribution Function Method

We have seen in chapter six that an easy way to find the probability
density function of a transformation of continuous random variables is to
determine its distribution function and then its density function by differen-
tiation.

Example 10.3. A box is to be constructed so that the height is 4 inches and
its base is X inches by X inches. If X has a standard normal distribution,
what is the distribution of the volume of the box?

Answer: The volume of the box is a random variable, since X is a random
variable. This random variable V is given by V = 4X2. To find the density
function of V , we first determine the form of the distribution function G(v)
of V and then we differentiate G(v) to find the density function of V . The
distribution function of V is given by

G(v) = P (V ≤ v)

= P
(
4X2 ≤ v

)

= P

(
−1

2
√

v ≤ X ≤ 1
2
√

v

)

=
∫ 1

2
√

v

− 1
2
√

v

1√
2π

e−
1
2 x2

dx

= 2
∫ 1

2
√

v

0

1√
2π

e−
1
2 x2

dx (since the integrand is even).
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Hence, by the Fundamental Theorem of Calculus, we get

g(v) =
dG(v)

dv

=
d

dv

(
2
∫ 1

2
√

v

0

1√
2π

e−
1
2 x2

dx

)

= 2
1√
2π

e−
1
2 ( 1

2
√

v)2
(

1
2

)
d
√

v

dv

=
1√
2π

e−
1
8 v 1

2
√

v

=
1

Γ
(

1
2

) √
8

v
1
2−1 e−

v
8

= V ∼ GAM

(
8,

1
2

)
.

Example 10.4. If the density function of X is

f(x) =






1
2 for −1 < x < 1

0 otherwise,

what is the probability density function of Y = X2 ?

Answer: We first find the cumulative distribution function of Y and then by
differentiation, we obtain the density of Y . The distribution function G(y)
of Y is given by

G(y) = P (Y ≤ y)

= P
(
X2 ≤ y

)

= P (−√y ≤ X ≤ √y)

=
∫ √

y

−√
y

1
2

dx

=
√

y.
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Hence, the density function of Y is given by

g(y) =
dG(y)

dy

=
d
√

y

dy

=
1

2√y
for 0 < y < 1.

10.2. Transformation Method for Univariate Case

The following theorem is the backbone of the transformation method.

Theorem 10.1. Let X be a continuous random variable with probability
density function f(x). Let y = T (x) be an increasing (or decreasing) function.
Then the density function of the random variable Y = T (X) is given by

g(y) =
∣∣∣∣
dx

dy

∣∣∣∣ f(W (y))

where x = W (y) is the inverse function of T (x).

Proof: Suppose y = T (x) is an increasing function. The distribution func-
tion G(y) of Y is given by

G(y) = P (Y ≤ y)

= P (T (X) ≤ y)

= P (X ≤W (y))

=
∫ W (y)

−∞
f(x) dx.
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Then, differentiating we get the density function of Y , which is

g(y) =
dG(y)

dy

=
d

dy

(∫ W (y)

−∞
f(x) dx

)

= f(W (y))
dW (y)

dy

= f(W (y))
dx

dy
(since x = W (y)).

On the other hand, if y = T (x) is a decreasing function, then the distribution
function of Y is given by

G(y) = P (Y ≤ y)

= P (T (X) ≤ y)

= P (X ≥ W (y)) (since T (x ) is decreasing)

= 1− P (X ≤ W (y))

= 1−
∫ W (y)

−∞
f(x) dx.

As before, differentiating we get the density function of Y , which is

g(y) =
dG(y)

dy

=
d

dy

(
1−
∫ W (y)

−∞
f(x) dx

)

= −f(W (y))
dW (y)

dy

= −f(W (y))
dx

dy
(since x = W (y)).

Hence, combining both the cases, we get

g(y) =
∣∣∣∣
dx

dy

∣∣∣∣ f(W (y))

and the proof of the theorem is now complete.

Example 10.5. Let Z = X−µ
σ . If X ∼ N

(
µ, σ2
)
, what is the probability

density function of Z?
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Answer:
z = U(x) =

x− µ

σ
.

Hence, the inverse of U is given by

W (z) = x

= σ z + µ.

Therefore
dx

dz
= σ.

Hence, by Theorem 10.1, the density of Z is given by

g(z) =
∣∣∣∣
dx

dz

∣∣∣∣ f(W (y))

= σ
1√

2πσ2
e
− 1

2

(
W (z)−µ

σ

)2

=
1√
2π

e−
1
2 ( zσ+µ−µ

σ )2

=
1√
2π

e−
1
2 z2

.

Example 10.6. Let Z = X−µ
σ . If X ∼ N

(
µ, σ2
)
, then show that Z2 is

chi-square with one degree of freedom, that Z2 ∼ χ2(1).

Answer:

y = T (x) =
(

x− µ

σ

)2

.

x = µ + σ
√

y.

W (y) = µ + σ
√

y, y > 0.

dx

dy
=
σ

2√y
.
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The density of Y is

g(y) =
∣∣∣∣
dx

dy

∣∣∣∣ f(W (y))

= σ
1

2 √y
f(W (y))

= σ
1

2 √y

1√
2πσ2

e
− 1

2

(
W (y)−µ

σ

)2

=
1

2
√

2π y
e
− 1

2

(√
yσ+µ−µ

σ

)2

=
1

2
√

2π y
e−

1
2 y

=
1

2
√
π
√

2
y− 1

2 e−
1
2 y

=
1

2Γ
(

1
2

) √
2

y− 1
2 e−

1
2 y.

Hence Y ∼ χ2(1).

Example 10.7. Let Y = − lnX. If X ∼ UNIF (0, 1), then what is the
density function of Y where nonzero?

Answer: We are given that

y = T (x) = − lnx.

Hence, the inverse of y = T (x) is given by

W (y) = x

= e−y.

Therefore
dx

dy
= − e−y.
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Hence, by Theorem 10.1, the probability density of Y is given by

g(y) =
∣∣∣∣
dx

dy

∣∣∣∣ f(W (y))

= e−y f(W (y))

= e−y.

Thus Y ∼ EXP (1). Hence, if X ∼ UNIF (0, 1), then the random variable
− lnX ∼ EXP (1).

Although all the examples we have in this section involve continuous
random variables, the transformation method also works for the discrete
random variables.

10.3. Transformation Method for Bivariate Case

In this section, we extend the Theorem 10.2 to the bivariate case and
present some examples to illustrate the importance of this extension. We
state this theorem without a proof.

Theorem 10.2. Let X and Y be two continuous random variables with
joint density f(x, y). Let U = P (X, Y ) and V = Q(X, Y ) be functions of X

and Y . If the functions P (x, y) and Q(x, y) have single valued inverses, say
X = R(U, V ) and Y = S(U, V ), then the joint density g(u, v) of U and V is
given by

g(u, v) = |J | f(R(u, v), S(u, v)),

where J denotes the Jacobian and given by

J = det
( ∂x

∂u
∂x
∂v

∂y
∂u

∂y
∂v

)

=
∂x

∂u

∂y

∂v
− ∂x
∂v

∂y

∂u
.
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Example 10.8. Let X and Y have the joint probability density function

f(x, y) =

{ 8 xy for 0 < x < y < 1

0 otherwise.

What is the joint density of U = X
Y and V = Y ?

Answer: Since
U =

X

Y
V = Y






we get by solving for X and Y

X = U Y = U V

Y = V.

}

Hence, the Jacobian of the transformation is given by

J =
∂x

∂u

∂y

∂v
− ∂x
∂v

∂y

∂u
= v · 1− u · 0
= v.

The joint density function of U and V is

g(u, v) = |J | f(R(u, v), S(u, v))

= |v| f(uv, v)

= v 8 (uv) v

= 8 uv3.

Note that, since
0 < x < y < 1

we have
0 < uv < v < 1.

The last inequalities yield

0 < uv < v

0 < v < 1.

}
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Therefore, we get
0 < u < 1

0 < v < 1.

}

Thus, the joint density of U and V is given by

g(u, v) =

{
8 uv3 for 0 < u < 1; 0 < v < 1

0 otherwise.

Example 10.9. Let each of the independent random variables X and Y

have the density function

f(x) =

{
e−x for 0 < x <∞

0 otherwise.
What is the joint density of U = X and V = 2X + 3Y and the domain on
which this density is positive?

Answer: Since
U = X

V = 2X + 3Y,

}

we get by solving for X and Y

X = U

Y =
1
3

V − 2
3

U.






Hence, the Jacobian of the transformation is given by

J =
∂x

∂u

∂y

∂v
− ∂x
∂v

∂y

∂u

= 1 ·
(

1
3

)
− 0 ·
(
−2

3

)

=
1
3
.
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The joint density function of U and V is

g(u, v) = |J | f(R(u, v), S(u, v))

=
∣∣∣∣
1
3

∣∣∣∣ f
(

u,
1
3
v − 2

3
u

)

=
1
3
e−u e−

1
3 v+ 2

3 u

=
1
3

e−(u+v
3 ).

Since
0 < x <∞
0 < y < ∞,

we get
0 < u < ∞
0 < v <∞,

Further, since v = 2u + 3y and 3y > 0, we have

v > 2u.

Hence, the domain of g(u, v) where nonzero is given by

0 < 2u < v <∞.

The joint density g(u, v) of the random variables U and V is given by

g(u, v) =






1
3 e−(u+v

3 ) for 0 < 2u < v <∞

0 otherwise.

Example 10.10. Let X and Y be independent random variables, each with
density function

f(x) =






λ e−λx for 0 < x <∞

0 otherwise,

where λ > 0. Let U = X + 2Y and V = 2X + Y . What is the joint density
of U and V ?

Answer: Since
U = X + 2Y

V = 2X + Y,

}
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we get by solving for X and Y

X = −1
3

U +
2
3

V

Y =
2
3

U − 1
3

V.






Hence, the Jacobian of the transformation is given by

J =
∂x

∂u

∂y

∂v
− ∂x
∂v

∂y

∂u

=
(
−1

3

) (
−1

3

)
−
(

2
3

) (
2
3

)

=
1
9
− 4

9

= −1
3
.

The joint density function of U and V is

g(u, v) = |J | f(R(u, v), S(u, v))

=
∣∣∣∣−

1
3

∣∣∣∣ f(R(u, v)) f(S(u, v))

=
1
3
λ eλR(u,v) λ eλS(u,v)

=
1
3
λ2 eλ[R(u,v)+S(u,v)]

=
1
3
λ2 e−λ(u+v

3 ).

Hence, the joint density g(u, v) of the random variables U and V is given by

g(u, v) =






1
3 λ

2 e−λ(u+v
3 ) for 0 < u < ∞; 0 < v <∞

0 otherwise.

Example 10.11. Let X and Y be independent random variables, each with
density function

f(x) =
1√
2π

e−
1
2 x2

, −∞ < x <∞.

Let U = X
Y and V = Y . What is the joint density of U and V ? Also, what

is the density of U?
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Answer: Since
U =

X

Y
V = Y,






we get by solving for X and Y

X = UV

Y = V.

}

Hence, the Jacobian of the transformation is given by

J =
∂x

∂u

∂y

∂v
− ∂x
∂v

∂y

∂u
= v · (1)− u · (0)

= v.

The joint density function of U and V is

g(u, v) = |J | f(R(u, v), S(u, v))

= |v| f(R(u, v)) f(S(u, v))

= |v| 1√
2π

e−
1
2 R2(u,v) 1√

2π
e−

1
2 S2(u,v)

= |v| 1
2π

e−
1
2 [R2(u,v)+S2(u,v)]

= |v| 1
2π

e−
1
2 [u2v2+v2]

= |v| 1
2π

e−
1
2 v2(u2+1).

Hence, the joint density g(u, v) of the random variables U and V is given by

g(u, v) = |v| 1
2π

e−
1
2 v2(u2+1),

where −∞ < u < ∞ and −∞ < v <∞.
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Next, we want to find the density of U . We can obtain this by finding the
marginal of U from the joint density of U and V . Hence, the marginal g1(u)
of U is given by

g1(u) =
∫ ∞

−∞
g(u, v) dv

=
∫ ∞

−∞
|v| 1

2π
e−

1
2 v2(u2+1) dv

=
∫ 0

−∞
−v

1
2π

e−
1
2 v2(u2+1) dv +

∫ ∞

0
v

1
2π

e−
1
2 v2(u2+1) dv

=
1
2π

(
1
2

) [
2

u2 + 1
e−

1
2 v2(u2+1)

]0

−∞

+
1
2π

(
1
2

) [
−2

u2 + 1
e−

1
2 v2(u2+1)

]∞

0

=
1
2π

1
u2 + 1

+
1
2π

1
u2 + 1

=
1

π (u2 + 1)
.

Thus U ∼ CAU(1).

Remark 10.1. If X and Y are independent and standard normal random
variables, then the quotient X

Y is always a Cauchy random variable. However,
the converse of this is not true. For example, if X and Y are independent
and each have the same density function

f(x) =
√

2
π

x2

1 + x4
, −∞ < x <∞,

then it can be shown that the random variable X
Y is a Cauchy random vari-

able. Laha (1959) and Kotlarski (1960) have given a complete description
of the family of all probability density function f such that the quotient X

Y



Probability and Mathematical Statistics 273

follows the standard Cauchy distribution whenever X and Y are independent
and identically distributed random variables with common density f .

Example 10.12. Let X have a Poisson distribution with mean λ. Find a
transformation T (x) so that V ar ( T (X) ) is free of λ, for large values of λ.

Answer: We expand the function T (x) by Taylor’s series about λ. Then,
neglecting the higher orders terms for large values of λ, we get

T (x) = T (λ) + (x− λ) T ′(λ) + · · · · · ·

where T ′(λ) represents derivative of T (x) at x = λ. Now, we compute the
variance of T (X).

V ar ( T (X) ) = V ar ( T (λ) + (X − λ) T ′(λ) + · · · )
= V ar ( T (λ) ) + V ar ( (X − λ) T ′(λ) )

= 0 + [T ′(λ)]2 V ar(X − λ)
= [T ′(λ)]2 V ar(X)

= [T ′(λ)]2 λ.

We want V ar( T (X) ) to be free of λ for large λ. Therefore, we have

[T ′(λ)]2 λ = k,

where k is a constant. From this, we get

T ′(λ) =
c√
λ

,

where c =
√

k. Solving this differential equation, we get

T (λ) = c

∫
1√
λ

dλ

= 2c
√
λ.

Hence, the transformation T (x) = 2c
√

x will free V ar( T (X) ) of λ if the
random variable X ∼ POI(λ).

Example 10.13. Let X ∼ POI(λ1) and Y ∼ POI(λ2). What is the
probability density function of X + Y if X and Y are independent?

Answer: Let us denote U = X + Y and V = X. First of all, we find the
joint density of U and V and then summing the joint density we determine
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the marginal of U which is the density function of X + Y ? Now writing X

and Y in terms of U and V , we get

X = V

Y = U −X = U − V.

}

Hence, the Jacobian of the transformation is given by

J =
∂x

∂u

∂y

∂v
− ∂x
∂v

∂y

∂u
= (0)(−1)− (1)(1)

= −1.

The joint density function of U and V is

g(u, v) = |J | f(R(u, v), S(u, v))

= |−1| f(v, u− v)

= f(v) f(u− v)

=
(

e−λ1λv
1

v!

) (
e−λ2λu−v

2

(u− v)!

)

=
e−(λ1+λ2)λv

1λ
u−v
2

(v)! (u− v)!
,

where v = 0, 1, 2, ..., u and u = 0, 1, 2, ...,∞. Hence, the marginal density of
U is given by

g1(u) =
u∑

v=0

e−(λ1+λ2)λv
1λ

u−v
2

(v)! (u− v)!

= e−(λ1+λ2)
u∑

v=0

λv
1λ

u−v
2

(v)! (u− v)!

= e−(λ1+λ2)
u∑

v=0

1
u!

(
u

v

)
λv

1λ
u−v
2

=
e−(λ1+λ2)

u!
(λ1 + λ2)

u .

Thus, the density function of U = X + Y is given by

g1(u) =






e−(λ1+λ2)

u! (λ1 + λ2)
u for u = 0, 1, 2, ...,∞

0 otherwise.

This example tells us that if X ∼ POI(λ1) and Y ∼ POI(λ2) and they are
independent, then X + Y ∼ POI(λ1 + λ2).
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Theorem 10.3. Let the joint density of the random variables X and Y be
f(x, y). Then probability density functions of X + Y , XY , and Y

X are given
by

hX+Y (v) =
∫ ∞

−∞
f(u, v − u) du

hXY (v) =
∫ ∞

−∞

1
|u| f
(
u,

v

u

)
du

hX
Y

(v) =
∫ ∞

−∞
|u| f (u, vu) du,

respectively.

Proof: Let U = X and V = X + Y . So that X = R(U, V ) = U , and
Y = S(U, V ) = V − U . Hence, the Jacobian of the transformation is given
by

J =
∂x

∂u

∂y

∂v
− ∂x
∂v

∂y

∂u
= 1.

The joint density function of U and V is

g(u, v) = |J | f(R(u, v), S(u, v))

= f(R(u, v), S(u, v))

= f(u, v − u).

Hence, the marginal density of V = X + Y is given by

hX+Y (v) =
∫ ∞

−∞
f(u, v − u) du.

Similarly, one can obtain the other two density functions. This completes
the proof.

In addition, if the random variables X and Y in Theorem 10.3 are in-
dependent and have the probability density functions f(x) and g(y) respec-
tively, then we have

hX+Y (z) =
∫ ∞

−∞
g(y) f(z − y) dy

hXY (z) =
∫ ∞

−∞

1
|y| g(y) f

(
z

y

)
dy

hX
Y

(z) =
∫ ∞

−∞
|y| g(y) f (zy) dy.
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Each of the following figures shows how the distribution of the random
variable X + Y is obtained from the joint distribution of (X, Y ).

Example 10.14. Roll an unbiased die twice. If X denotes the outcome
in the first roll and Y denotes the outcome in the second roll, what is the
distribution of the random variable Z = max{X, Y }?

Answer: The space of X is RX = {1, 2, 3, 4, 5, 6}. Similarly, the space of Y

is RY = {1, 2, 3, 4, 5, 6}. Hence the space of the random variable (X, Y ) is
RX ×RY . The following table shows the distribution of (X, Y ).

1 1
36

1
36

1
36

1
36

1
36

1
36

2 1
36

1
36

1
36

1
36

1
36

1
36

3 1
36

1
36

1
36

1
36

1
36

1
36

4 1
36

1
36

1
36

1
36

1
36

1
36

5 1
36

1
36

1
36

1
36

1
36

1
36

6 1
36

1
36

1
36

1
36

1
36

1
36

1 2 3 4 5 6

The space of the random variable Z = max{X, Y } is RZ = {1, 2, 3, 4, 5, 6}.
Thus Z = 1 only if (X, Y ) = (1, 1). Hence P (Z = 1) = 1

36 . Similarly, Z = 2
only if (X, Y ) = (1, 2), (2, 2) or (2, 1). Hence, P (Z = 2) = 3

36 . Proceeding in
a similar manner, we get the distribution of Z which is summarized in the
table below.
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z 1 2 3 4 5 6

h(z) 1
36

3
36

5
36

7
36

9
36

11
36

In this example, the random variable Z may be described as the best out of
two rolls. Note that the probability density of Z can also be stated as

h(z) =
2z − 1

36
, for z ∈ {1, 2, 3, 4, 5, 6}.

10.4. Convolution Method for Sums of Random Variables

In this section, we illustrate how convolution technique can be used in
finding the distribution of the sum of random variables when they are inde-
pendent. This convolution technique does not work if the random variables
are not independent.

Definition 10.1. Let f and g be two real valued functions. The convolution
of f and g, denoted by f / g, is defined as

(f / g)(z) =
∫ ∞

−∞
f(z − y) g(y) dy

=
∫ ∞

−∞
g(z − x) f(x) dx.

Hence from this definition it is clear that f / g = g / f .

Let X and Y be two independent random variables with probability
density functions f(x) and g(y). Then by Theorem 10.3, we get

h(z) =
∫ ∞

−∞
f(z − y) g(y) dy.

Thus, this result shows that the density of the random variable Z = X + Y

is the convolution of the density of X with the density of Y .

Example 10.15. What is the probability density of the sum of two inde-
pendent random variables, each of which is uniformly distributed over the
interval [0, 1]?

Answer: Let Z = X + Y , where X ∼ UNIF (0, 1) and Y ∼ UNIF (0, 1).
Hence, the density function f(x) of the random variable X is given by

f(x) =

{ 1 for 0 ≤ x ≤ 1

0 otherwise.
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Similarly, the density function g(y) of Y is given by

g(y) =

{ 1 for 0 ≤ y ≤ 1

0 otherwise.

Since X and Y are independent, the density function of Z can be obtained
by the method of convolution. Since, the sum z = x + y is between 0 and 2,
we consider two cases. First, suppose 0 ≤ z ≤ 1, then

h(z) = (f / g) (z)

=
∫ ∞

−∞
f(z − x) g(x) dx

=
∫ 1

0
f(z − x) g(x) dx

=
∫ z

o
f(z − x) g(x) dx +

∫ 1

z
f(z − x) g(x) dx

=
∫ z

o
f(z − x) g(x) dx + 0 (since f(z − x) = 0 between z and 1)

=
∫ z

0
dx

= z.

Similarly, if 1 ≤ z ≤ 2, then

h(z) = (f / g) (z)

=
∫ ∞

−∞
f(z − x) g(x) dx

=
∫ 1

0
f(z − x) g(x) dx

=
∫ z−1

0
f(z − x) g(x) dx +

∫ 1

z−1
f(z − x) g(x) dx

= 0 +
∫ 1

z−1
f(z − x) g(x) dx (since f(z − x) = 0 between 0 and z − 1)

=
∫ 1

z−1
dx

= 2− z.
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Thus, the density function of Z = X + Y is given by

h(z) =






0 for −∞ < z ≤ 0

z for 0 ≤ z ≤ 1

2− z for 1 ≤ z ≤ 2

0 for 2 < z <∞ .

The graph of this density function looks like a tent and it is called a tent func-
tion. However, in literature, this density function is known as the Simpson’s
distribution.

Example 10.16. What is the probability density of the sum of two inde-
pendent random variables, each of which is gamma with parameter α = 1
and θ = 1 ?

Answer: Let Z = X + Y , where X ∼ GAM(1, 1) and Y ∼ GAM(1, 1).
Hence, the density function f(x) of the random variable X is given by

f(x) =

{
e−x for 0 < x <∞

0 otherwise.

Similarly, the density function g(y) of Y is given by

g(y) =

{
e−y for 0 < y < ∞

0 otherwise.

Since X and Y are independent, the density function of Z can be obtained
by the method of convolution. Notice that the sum z = x + y is between 0
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and ∞, and 0 < x < z. Hence, the density function of Z is given by

h(z) = (f / g) (z)

=
∫ ∞

−∞
f(z − x) g(x) dx

=
∫ ∞

0
f(z − x) g(x) dx

=
∫ z

0
e−(z−x) e−x dx

=
∫ z

0
e−z+x e−x dx

=
∫ z

0
e−z dx

= z e−z

=
1

Γ(2) 12
z2−1 e−

z
1 .

Hence Z ∼ GAM(1, 2). Thus, if X ∼ GAM(1, 1) and Y ∼ GAM(1, 1),
then X + Y ∼ GAM(1, 2), that X + Y is a gamma with α = 2 and θ = 1.
Recall that a gamma random variable with α = 1 is known as an exponential
random variable with parameter θ. Thus, in view of the above example, we
see that the sum of two independent exponential random variables is not
necessarily an exponential variable.

Example 10.17. What is the probability density of the sum of two inde-
pendent random variables, each of which is standard normal?

Answer: Let Z = X + Y , where X ∼ N(0, 1) and Y ∼ N(0, 1). Hence, the
density function f(x) of the random variable X is given by

f(x) =
1√
2π

e−
x2
2

Similarly, the density function g(y) of Y is given by

g(y) =
1√
2π

e−
y2
2

Since X and Y are independent, the density function of Z can be obtained
by the method of convolution. Notice that the sum z = x+y is between −∞
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and ∞. Hence, the density function of Z is given by

h(z) = (f / g) (z)

=
∫ ∞

−∞
f(z − x) g(x) dx

=
1
2π

∫ ∞

−∞
e

−(z−x)2

2 e−
x2
2 dx

=
1
2π

e−
z2
4

∫ ∞

−∞
e−(x− z

2 )
2

dx

=
1
2π

e−
z2
4
√
π

[∫ ∞

−∞

1√
π

e−(x− z
2 )

2

dx

]

=
1
2π

e−
z2
4

[∫ ∞

−∞

1√
π

e−w2
dw

]
, where w = x− z

2

=
1√
4π

e−
z2
4

=
1√
4π

e
− 1

2

(
z−0√

2

)2
.

The integral in the brackets equals to one, since the integrand is the normal
density function with mean µ = 0 and variance σ2 = 1

2 . Hence sum of two
standard normal random variables is again a normal random variable with
mean zero and variance 2.

Example 10.18. What is the probability density of the sum of two inde-
pendent random variables, each of which is Cauchy?

Answer: Let Z = X + Y , where X ∼ N(0, 1) and Y ∼ N(0, 1). Hence, the
density function f(x) of the random variable X and Y are is given by

f(x) =
1

π (1 + x2)
and g(y) =

1
π (1 + y2)

,

respectively. Since X and Y are independent, the density function of Z can
be obtained by the method of convolution. Notice that the sum z = x + y is
between −∞ and ∞. Hence, the density function of Z is given by

h(z) = (f / g) (z)

=
∫ ∞

−∞
f(z − x) g(x) dx

=
∫ ∞

−∞

1
π (1 + (z − x)2)

1
π (1 + x2)

dx

=
1
π2

∫ ∞

−∞

1
1 + (z − x)2

1
1 + x2

dx.
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To integrate the above integral, we decompose the integrand using partial
fraction decomposition. Hence

1
1 + (z − x)2

1
1 + x2

=
2 A x + B

1 + x2
+

2 C (z − x) + D

1 + (z − x)2

where
A =

1
z (4 + z2)

= C and B =
1

4 + z2
= D.

Now integration yields

1
π2

∫ ∞

−∞

1
1 + (z − x)2

1
1 + x2

dx

=
1

π2 z2 (4 + z2)

[
z ln
(

1 + x2

1 + (z − x)2

)
+ z2 tan−1 x− z2 tan−1(z − x)

]∞

−∞

=
1

π2 z2 (4 + z2)
[
0 + z2 π + z2 π

]

=
2

π (4 + z2)
.

Hence the sum of two independent Cauchy random variables is not a Cauchy
random variable.

If X ∼ CAU(0) and Y ∼ CAU(0), then it can be easily shown using
Example 10.18 that the random variable Z = X+Y

2 is again Cauchy, that is
Z ∼ CAU(0). This is a remarkable property of the Cauchy distribution.

So far we have considered the convolution of two continuous independent
random variables. However, the concept can be modified to the case when
the random variables are discrete.

Let X and Y be two discrete random variables both taking on values
that are integers. Let Z = X + Y be the sum of the two random variables.
Hence Z takes values on the set of integers. Suppose that X = n where n is
some integer. Then Z = z if and only if Y = z−n. Thus the events (Z = z)
is the union of the pair wise disjoint events (X = n) and (Y = z − n) where
n runs over the integers. The cdf H(z) of Z can be obtained as follows:

P (Z = z) =
∞∑

n=−∞
P (X = n) P (Y = z − n)

which is

h(z) =
∞∑

n=−∞
f(n) g(z − n),
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where F (x) and G(y) are the cdf of X and Y , respectively.

Definition 10.2. Let X and Y be two independent integer-valued discrete
random variables, with pdfs f(x) and g(y) respectively. Then the convolution
of f(x) and g(y) is the cdf h = f / g given by

h(m) =
∞∑

n=−∞
f(n) g(m− n),

for m = −∞, ...,−2,−1, 0, 1, 2, ....∞. The function h(z) is the pdf of the
discrete random variable Z = X + Y .

Example 10.19. Let each of the random variable X and Y represents the
outcomes of a six-sided die. What is the cumulative density function of the
sum of X and Y ?

Answer: Since the range of X as well as Y is {1, 2, 3, 4, 5, 6}, the range of
Z = X + Y is RZ = {2, 3, 4, ..., 11, 12}. The pdf of Z is given by

h(2) = f(1) g(1) =
1
6
· 1
6

=
1
36

h(3) = f(1) g(2) + f(2) g(1) =
1
6
· 1
6

+
1
6
· 1
6

=
2
36

h(4) = f(1) g(3) + h(2) g(2) + f(3) g(1) =
1
6
· 1
6

+
1
6
· 1
6

+
1
6
· 1
6

=
3
36

.

Continuing in this manner we obtain h(5) = 4
36 , h(6) = 5

36 , h(7) = 6
36 ,

h(8) = 5
36 , h(9) = 4

36 , h(10) = 3
36 , h(11) = 2

36 , and h(12) = 1
36 . Putting

these into one expression we have

h(z) =
z−1∑

n=1

f(n)g(z − n)

=
6− |z − 7|

36
, z = 2, 3, 4, ..., 12.

It is easy to note that the convolution operation is commutative as well
as associative. Using the associativity of the convolution operation one can
compute the pdf of the random variable Sn = X1 + X2 + · · · + Xn, where
X1, X2, ..., Xn are random variables each having the same pdf f(x). Then
the pdf of S1 is f(x). Since Sn = Sn−1 + Xn and the pdf of Xn is f(x), the
pdf of Sn can be obtained by induction.
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10.5. Moment Generating Function Method

We know that if X and Y are independent random variables, then

MX+Y (t) = MX(t) MY (t).

This result can be used to find the distribution of the sum X + Y . Like the
convolution method, this method can be used in finding the distribution of
X + Y if X and Y are independent random variables. We briefly illustrate
the method using the following example.

Example 10.20. Let X ∼ POI(λ1) and Y ∼ POI(λ2). What is the
probability density function of X + Y if X and Y are independent?

Answer: Since, X ∼ POI(λ1) and Y ∼ POI(λ2), we get

MX(t) = eλ1 (et−1)

and
MY (t) = eλ2 (et−1).

Further, since X and Y are independent, we have

MX+Y (t) = MX(t) MY (t)

= eλ1 (et−1) eλ2 (et−1)

= eλ1 (et−1)+λ2 (et−1)

= e(λ1+λ2)(e
t−1),

that is, X+Y ∼ POI(λ1+λ2). Hence the density function h(z) of Z = X+Y

is given by

h(z) =






e−(λ1+λ2)

z! (λ1 + λ2)
z for z = 0, 1, 2, 3, ...

0 otherwise.

Compare this example to Example 10.13. You will see that moment method
has a definite advantage over the convolution method. However, if you use the
moment method in Example 10.15, then you will have problem identifying
the form of the density function of the random variable X + Y . Thus, it
is difficult to say which method always works. Most of the time we pick a
particular method based on the type of problem at hand.
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Example 10.21. What is the probability density function of the sum of
two independent random variable, each of which is gamma with parameters
θ and α?

Answer: Let X and Y be two independent gamma random variables with
parameters θ and α, that is X ∼ GAM(θ, α) and Y ∼ GAM(θ, α). From
Theorem 6.3, the moment generating functions of X and Y are obtained as
MX(t) = (1 − θ)−α and MY (t) = (1 − θ)−α, respectively. Since, X and Y

are independent, we have

MX+Y (t) = MX(t) MY (t)

= (1− θ)−α (1− θ)−α

= (1− θ)−2α.

Thus X + Y has a moment generating function of a gamma random variable
with parameters θ and 2α. Therefore

X + Y ∼ GAM(θ, 2α).

10.6. Review Exercises

1. Let X be a continuous random variable with density function

f(x) =

{
e−2x + 1

2 e−x for 0 < x <∞

0 otherwise.

If Y = e−2X , then what is the density function of Y where nonzero?

2. Suppose that X is a random variable with density function

f(x) =

{ 3
8 x2 for 0 < x < 2

0 otherwise.

Let Y = mX2, where m is a fixed positive number. What is the density
function of Y where nonzero?

3. Let X be a continuous random variable with density function

f(x) =

{
2 e−2x for x > 0

0 otherwise

and let Y = e−X . What is the density function g(y) of Y where nonzero?
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4. What is the probability density of the sum of two independent random
variables, each of which is uniformly distributed over the interval [−2, 2]?

5. Let X and Y be random variables with joint density function

f(x, y) =

{
e−x for 0 < x <∞; 0 < y < 1

0 elsewhere .

If Z = X + 2Y , then what is the joint density of X and Z where nonzero?

6. Let X be a continuous random variable with density function

f(x) =

{ 2
x2 for 1 < x < 2

0 elsewhere.

If Y =
√

X, then what is the density function of Y for 1 < y <
√

2?

7. What is the probability density of the sum of two independent random
variables, each of which has the density function given by

f(x) =

{ 10−x
50 for 0 < x < 10

0 elsewhere?

8. What is the probability density of the sum of two independent random
variables, each of which has the density function given by

f(x) =

{ a
x2 for a ≤ x <∞

0 elsewhere?

9. Roll an unbiased die 3 times. If U denotes the outcome in the first roll, V

denotes the outcome in the second roll, and W denotes the outcome of the
third roll, what is the distribution of the random variable Z = max{U, V, W}?

10. The probability density of V , the velocity of a gas molecule, by Maxwell-
Boltzmann law is given by

f(v) =






4 h3
√
π

v2 e−h2v2
for 0 ≤ v <∞

0 otherwise,

where h is the Plank’s constant. If m represents the mass of a gas molecule,
then what is the probability density of the kinetic energy Z = 1

2 mV 2 ?
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11. If the random variables X and Y have the joint density

f(x, y) =






6
7 x for 1 ≤ x + y ≤ 2, x ≥ 0, y ≥ 0

0 otherwise,

what is the joint density of U = 2X + 3Y and V = 4X + Y ?

12. If the random variables X and Y have the joint density

f(x, y) =






6
7 x for 1 ≤ x + y ≤ 2, x ≥ 0, y ≥ 0

0 otherwise,

what is the density of X
Y ?

13. Let X and Y have the joint probability density function

f(x, y) =

{ 5
16 xy2 for 0 < x < y < 2

0 elsewhere.

What is the joint density function of U = 3X − 2Y and V = X + 2Y where
it is nonzero?

14. Let X and Y have the joint probability density function

f(x, y) =

{ 4x for 0 < x <
√

y < 1

0 elsewhere.

What is the joint density function of U = 5X − 2Y and V = 3X + 2Y where
it is nonzero?

15. Let X and Y have the joint probability density function

f(x, y) =

{ 4x for 0 < x <
√

y < 1

0 elsewhere.

What is the density function of X − Y ?

16. Let X and Y have the joint probability density function

f(x, y) =

{ 4x for 0 < x <
√

y < 1

0 elsewhere.
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What is the density function of X
Y ?

17. Let X and Y have the joint probability density function

f(x, y) =

{ 4x for 0 < x <
√

y < 1

0 elsewhere.

What is the density function of XY ?

18. Let X and Y have the joint probability density function

f(x, y) =

{ 5
16 xy2 for 0 < x < y < 2

0 elsewhere.

What is the density function of Y
X ?

19. If X an uniform random variable on the interval [0, 2] and Y is an uniform
random variable on the interval [0, 3], then what is the joint probability
density function of X + Y if they are independent?

20. What is the probability density function of the sum of two independent
random variable, each of which is binomial with parameters n and p?

21. What is the probability density function of the sum of two independent
random variable, each of which is exponential with mean θ?

22. What is the probability density function of the average of two indepen-
dent random variable, each of which is Cauchy with parameter θ = 0?

23. What is the probability density function of the average of two indepen-
dent random variable, each of which is normal with mean µ and variance
σ2?

24. Both roots of the quadratic equation x2 +αx+β = 0 can take all values
from −1 to +1 with equal probabilities. What are the probability density
functions of the coefficients α and β?

25. If A, B, C are independent random variables uniformly distributed on
the interval from zero to one, then what is the probability that the quadratic
equation Ax2 + Bx + C = 0 has real solutions?

26. The price of a stock on a given trading day changes according to the
distribution f(−1) = 1

4 , f(0) = 1
2 , f(1) = 1

8 , and f(2) = 1
8 . Find the

distribution for the change in stock price after two (independent) trading
days.
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Chapter 11

SOME
SPECIAL DISCRETE

BIVARIATE DISTRIBUTIONS

In this chapter, we shall examine some bivariate discrete probability den-
sity functions. Ever since the first statistical use of the bivariate normal dis-
tribution (which will be treated in Chapter 12) by Galton and Dickson in
1886, attempts have been made to develop families of bivariate distributions
to describe non-normal variations. In many textbooks, only the bivariate
normal distribution is treated. This is partly due to the dominant role the
bivariate normal distribution has played in statistical theory. Recently, how-
ever, other bivariate distributions have started appearing in probability mod-
els and statistical sampling problems. This chapter will focus on some well
known bivariate discrete distributions whose marginal distributions are well-
known univariate distributions. The book of K.V. Mardia gives an excellent
exposition on various bivariate distributions.

11.1. Bivariate Bernoulli Distribution

We define a bivariate Bernoulli random variable by specifying the form
of the joint probability distribution.

Definition 11.1. A discrete bivariate random variable (X, Y ) is said to have
the bivariate Bernoulli distribution if its joint probability density is of the
form

f(x, y) =






1
x! y! (1−x−y)! px

1 py
2 (1− p1 − p2)

1−x−y , if x, y = 0, 1

0 otherwise,
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where 0 < p1, p2, p1 +p2 < 1 and x+y ≤ 1. We denote a bivariate Bernoulli
random variable by writing (X, Y ) ∼ BER (p1, p2).

In the following theorem, we present the expected values and the vari-
ances of X and Y , the covariance between X and Y , and their joint moment
generating function. Recall that the joint moment generating function of X

and Y is defined as M(s, t) := E
(
esX+tY

)
.

Theorem 11.1. Let (X, Y ) ∼ BER (p1, p2), where p1 and p2 are parame-
ters. Then

E(X) = p1

E(Y ) = p2

V ar(X) = p1 (1− p1)

V ar(Y ) = p2 (1− p2)

Cov(X, Y ) = −p1 p2

M(s, t) = 1− p1 − p2 + p1e
s + p2e

t.

Proof: First, we derive the joint moment generating function of X and Y and
then establish the rest of the results from it. The joint moment generating
function of X and Y is given by

M(s, t) = E
(
esX+tY

)

=
1∑

x=0

1∑

y=0

f(x, y) esx+ty

= f(0, 0) + f(1, 0) es + f(0, 1) et + f(1, 1) et+s

= 1− p1 − p2 + p1e
s + p2e

t + 0 et+s

= 1− p1 − p2 + p1e
s + p2e

t.

The expected value of X is given by

E(X) =
∂M

∂s

∣∣∣∣
(0,0)

=
∂

∂s

(
1− p1 − p2 + p1e

s + p2e
t
)∣∣∣∣

(0,0)

= p1 es |(0,0)

= p1.
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Similarly, the expected value of Y is given by

E(Y ) =
∂M

∂t

∣∣∣∣
(0,0)

=
∂

∂t

(
1− p1 − p2 + p1e

s + p2e
t
)∣∣∣∣

(0,0)

= p2 et
∣∣
(0,0)

= p2.

The product moment of X and Y is

E(XY ) =
∂2M

∂t ∂s

∣∣∣∣
(0,0)

=
∂2

∂t ∂s

(
1− p1 − p2 + p1e

s + p2e
t
)∣∣∣∣

(0,0)

=
∂

∂t
( p1 es )

∣∣∣∣
(0,0)

= 0.

Therefore the covariance of X and Y is

Cov(X, Y ) = E(XY )− E(X) E(Y ) = −p1p2

Similarly, it can be shown that

E(X2) = p1 and E(Y 2) = p2.

Thus, we have

V ar(X) = E(X2)− E(X)2 = p1 − p2
1 = p1 (1− p1)

and

V ar(Y ) = E(Y 2)− E(Y )2 = p2 − p2
2 = p2 (1− p2).

This completes the proof of the theorem.

The next theorem presents some information regarding the conditional
distributions f(x/y) and f(y/x).
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Theorem 11.2. Let (X, Y ) ∼ BER (p1, p2), where p1 and p2 are parame-
ters. Then the conditional distributions f(y/x) and f(x/y) are also Bernoulli
and

E(Y/x) =
p2 (1− x)

1− p1

E(X/y) =
p1 (1− y)

1− p2

V ar(Y/x) =
p2 (1− p1 − p2) (1− x)

(1− p1)2

V ar(X/y) =
p1 (1− p1 − p2) (1− y)

(1− p2)2
.

Proof: Notice that

f(y/x) =
f(x, y)
f1(x)

=
f(x, y)
1∑

y=0

f(x, y)

=
f(x, y)

f(x, 0) + f(x, 1)
x = 0, 1; y = 0, 1; 0 ≤ x + y ≤ 1.

Hence
f(1/0) =

f(0, 1)
f(0, 0) + f(0, 1)

=
p2

1− p1 − p2 + p2

=
p2

1− p1

and
f(1/1) =

f(1, 1)
f(1, 0) + f(1, 1)

=
0

p1 + 0
= 0.

Now we compute the conditional expectation E(Y/x) for x = 0, 1. Hence

E(Y/x = 0) =
1∑

y=0

y f(y/0)

= f(1/0)

=
p2

1− p1
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and
E(Y/x = 1) = f(1/1) = 0.

Merging these together, we have

E(Y/x) =
p2 (1− x)

1− p1
x = 0, 1.

Similarly, we compute

E(Y 2/x = 0) =
1∑

y=0

y2 f(y/0)

= f(1/0)

=
p2

1− p1

and
E(Y 2/x = 1) = f(1/1) = 0.

Therefore
V ar(Y/x = 0) = E(Y 2/x = 0)− E(Y/x = 0)2

=
p2

1− p1
−
(

p2

1− p1

)2

=
p2(1− p1)− p2

2

(1− p1)2

=
p2 (1− p1 − p2)

(1− p1)2

and
V ar(Y/x = 1) = 0.

Merging these together, we have

V ar(Y/x) =
p2 (1− p1 − p2) (1− x)

(1− p1)2
x = 0, 1.

The conditional expectation E(X/y) and the conditional variance V ar(X/y)
can be obtained in a similar manner. We leave their derivations to the reader.

11.2. Bivariate Binomial Distribution

The bivariate binomial random variable is defined by specifying the form
of the joint probability distribution.
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Definition 11.2. A discrete bivariate random variable (X, Y ) is said to
have the bivariate binomial distribution with parameters n, p1, p2 if its joint
probability density is of the form

f(x, y) =






n!
x! y! (n−x−y)! px

1 py
2 (1− p1 − p2)

n−x−y , if x, y = 0, 1, ..., n

0 otherwise,

where 0 < p1, p2, p1+p2 < 1, x+y ≤ n and n is a positive integer. We denote
a bivariate binomial random variable by writing (X, Y ) ∼ BIN (n, p1, p2).

Bivariate binomial distribution is also known as trinomial distribution.
It will be shown in the proof of Theorem 11.4 that the marginal distributions
of X and Y are BIN(n, p1) and BIN(n, p2), respectively.

The following two examples illustrate the applicability of bivariate bino-
mial distribution.

Example 11.1. In the city of Louisville on a Friday night, radio station A

has 50 percent listeners, radio station B has 30 percent listeners, and radio
station C has 20 percent listeners. What is the probability that among 8
listeners in the city of Louisville, randomly chosen on a Friday night, 5 will
be listening to station A, 2 will be listening to station B, and 1 will be
listening to station C?

Answer: Let X denote the number listeners that listen to station A, and
Y denote the listeners that listen to station B. Then the joint distribution
of X and Y is bivariate binomial with n = 8, p1 = 5

10 , and p2 = 3
10 . The

probability that among 8 listeners in the city of Louisville, randomly chosen
on a Friday night, 5 will be listening to station A, 2 will be listening to station
B, and 1 will be listening to station C is given by

P (X = 5, Y = 2) = f(5, 2)

=
n!

x! y! (n− x− y)!
px
1 py

2 (1− p1 − p2)
n−x−y

=
8!

5! 2! 1!

(
5
10

)5 ( 3
10

)2 ( 2
10

)

= 0.0945.

Example 11.2. A certain game involves rolling a fair die and watching the
numbers of rolls of 4 and 5. What is the probability that in 10 rolls of the
die one 4 and three 5 will be observed?
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Answer: Let X denote the number of 4 and Y denote the number of 5.
Then the joint distribution of X and Y is bivariate binomial with n = 10,
p1 = 1

6 , p2 = 1
6 and 1 − p1 − p2 = 4

6 . Hence the probability that in 10 rolls
of the die one 4 and three 5 will be observed is

P (X = 5, Y = 2) = f(1, 3)

=
n!

x! y! (n− x− y)!
px
1 py

2 (1− p1 − p2)
n−x−y

=
10!

1! 3! (10− 1− 3)!

(
1
6

)1 (1
6

)3 (
1− 1

6
− 1

6

)10−1−3

=
10!

1! 3! (10− 1− 3)!

(
1
6

)1 (1
6

)3 (4
6

)6

=
573440

10077696
= 0.0569.

Using transformation method discussed in chapter 10, it can be shown
that if X1, X2 and X3 are independent binomial random variables, then the
joint distribution of the random variables

X = X1 + X2 and Y = X1 + X3

is bivariate binomial. This approach is known as trivariate reduction tech-
nique for constructing bivariate distribution.

To establish the next theorem, we need a generalization of the binomial
theorem which was treated in Chapter 1. The following result generalizes the
binomial theorem and can be called trinomial theorem. Similar to the proof
of binomial theorem, one can establish

(a + b + c)n =
n∑

x=0

n∑

y=0

(
n

x, y

)
ax by cn−x−y,

where 0 ≤ x + y ≤ n and
(

n

x, y

)
=

n!
x! y! (n− x− y)!

.

In the following theorem, we present the expected values of X and Y ,
their variances, the covariance between X and Y , and the joint moment
generating function.
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Theorem 11.3. Let (X, Y ) ∼ BIN (n, p1, p2), where n, p1 and p2 are
parameters. Then

E(X) = n p1

E(Y ) = n p2

V ar(X) = n p1 (1− p1)

V ar(Y ) = n p2 (1− p2)

Cov(X, Y ) = −n p1 p2

M(s, t) =
(
1− p1 − p2 + p1e

s + p2e
t
)n

.

Proof: First, we find the joint moment generating function of X and Y . The
moment generating function M(s, t) is given by

M(s, t) = E
(
esX+tY

)

=
n∑

x=0

n∑

y=0

esx+tyf(x, y)

=
n∑

x=0

n∑

y=0

esx+ty n!
x! y! (n− x− y)!

px
1 py

2 (1− p1 − p2)
n−x−y

=
n∑

x=0

n∑

y=0

n!
x! y! (n− x− y)!

(esp1)
x (etp2

)y (1− p1 − p2)
n−x−y

=
(
1− p1 − p2 + p1e

s + p2e
t
)n (by trinomial theorem).

The expected value of X is given by

E(X) =
∂M

∂s

∣∣∣∣
(0,0)

=
∂

∂s

(
1− p1 − p2 + p1e

s + p2e
t
)n
∣∣∣∣
(0,0)

= n
(
1− p1 − p2 + p1e

s + p2e
t
)n−1

p1 es
∣∣∣
(0,0)

= n p1.

Similarly, the expected value of Y is given by

E(Y ) =
∂M

∂t

∣∣∣∣
(0,0)

=
∂

∂t

(
1− p1 − p2 + p1e

s + p2e
t
)n
∣∣∣∣
(0,0)

= n
(
1− p1 − p2 + p1e

s + p2e
t
)n−1

p2 et
∣∣∣
(0,0)

= n p2.



Probability and Mathematical Statistics 297

The product moment of X and Y is

E(XY ) =
∂2M

∂t ∂s

∣∣∣∣
(0,0)

=
∂2

∂t ∂s

(
1− p1 − p2 + p1e

s + p2e
t
)n
∣∣∣∣
(0,0)

=
∂

∂t

(
n
(
1− p1 − p2 + p1e

s + p2e
t
)n−1

p1 es
)∣∣∣∣

(0,0)

= n (n− 1)p1p2.

Therefore the covariance of X and Y is

Cov(X, Y ) = E(XY )− E(X) E(Y ) = n(n− 1)p1p2 − n2p1p2 = −np1p2.

Similarly, it can be shown that

E(X2) = n(n− 1)p2
1 + np1 and E(Y 2) = n(n− 1)p2

2 + np2.

Thus, we have
V ar(X) = E(X2)− E(X)2

= n(n− 1)p2
2 + np2 − n2p2

1

= n p1 (1− p1)

and similarly

V ar(Y ) = E(Y 2)− E(Y )2 = n p2 (1− p2).

This completes the proof of the theorem.

The following results are needed for the next theorem and they can be
established using binomial theorem discussed in chapter 1. For any real
numbers a and b, we have

m∑

y=0

y

(
m

y

)
ay bm−y = m a (a + b)m−1 (11.1)

and
m∑

y=0

y2

(
m

y

)
ay bm−y = m a (ma + b) (a + b)m−2 (11.2)

where m is a positive integer.
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Example 11.3. If X equals the number of ones and Y equals the number of
twos and threes when a pair of fair dice are rolled, then what is the correlation
coefficient of X and Y ?

Answer: The joint density of X and Y is bivariate binomial and is given by

f(x, y) =
2!

x! y! (2− x− y)!

(
1
6

)x (2
6

)y (3
6

)2−x−y

, 0 ≤ x + y ≤ 2,

where x and y are nonnegative integers. By Theorem 11.3, we have

V ar(X) = n p1 (1− p1) = 2
1
6

(
1− 1

6

)
=

10
36

,

V ar(Y ) = n p2 (1− p2) = 2
2
6

(
1− 2

6

)
=

16
36

,

and

Cov(X, Y ) = −n p1 p2 = −2
1
6

2
6

= − 4
36

.

Therefore

Corr(X, Y ) =
Cov(X, Y )√

V ar(X) V ar(Y )

= − 4
4
√

10
= −0.3162.

The next theorem presents some information regarding the conditional
distributions f(x/y) and f(y/x).

Theorem 11.4. Let (X, Y ) ∼ BIN (n, p1, p2), where n, p1 and p2 are
parameters. Then the conditional distributions f(y/x) and f(x/y) are also
binomial and

E(Y/x) =
p2 (n− x)

1− p1

E(X/y) =
p1 (n− y)

1− p2

V ar(Y/x) =
p2 (1− p1 − p2) (n− x)

(1− p1)2

V ar(X/y) =
p1 (1− p1 − p2) (n− y)

(1− p2)2
.
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Proof: Since f(y/x) = f(x,y)
f1(x) , first we find the marginal density of X. The

marginal density f1(x) of X is given by

f1(x) =
n−x∑

y=0

n!
x! y! (n− x− y)!

px
1 py

2 (1− p1 − p2)
n−x−y

=
n! px

1

x! (n− x)!

n−x∑

y=0

(n− x)!
y! (n− x− y)!

py
2 (1− p1 − p2)n−x−y

=
(

n

x

)
px
1 (1− p1 − p2 + p2)

n−x (by binomial theorem)

=
(

n

x

)
px
1 (1− p1)

n−x .

In order to compute the conditional expectations, we need the conditional
densities of f(x, y). The conditional density of Y given X = x is

f(y/x) =
f(x, y)
f1(x)

=
f(x, y)

(n
x

)
px
1 (1− p1)

n−x

=
(n− x)!

(n− x− y)! y!
py
2 (1− p1 − p2)n−x−y (1− p1)x−n

= (1− p1)x−n

(
n− x

y

)
py
2 (1− p1 − p2)

n−x−y .

Hence the conditional expectation of Y given the event X = x is

E (Y/x) =
n−x∑

y=0

y (1− p1)x−n

(
n− x

y

)
py
2 (1− p1 − p2)

n−x−y

= (1− p1)x−n
n−x∑

y=0

y

(
n− x

y

)
py
2 (1− p1 − p2)

n−x−y

= (1− p1)x−n p2 (n− x) (1− p1)n−x−1

=
p2 (n− x)

1− p1
.

Next, we find the conditional variance of Y given event X = x. For this
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we need the conditional expectation E
(
Y 2/x
)
, which is given by

E
(
Y 2/x
)

=
n−x∑

y=0

y2f(x, y)

=
n−x∑

y=0

y2 (1− p1)x−n

(
n− x

y

)
py
2 (1− p1 − p2)

n−x−y

= (1− p1)x−n
n−x∑

y=0

y2

(
n− x

y

)
py
2 (1− p1 − p2)

n−x−y

= (1− p1)x−n p2 (n− x) (1− p1)n−x−2 [(n− x)p2 + 1− p1 − p2]

=
p2 (n− x)[(n− x)p2 + 1− p1 − p2]

(1− p1)2
.

Hence, the conditional variance of Y given X = x is

V ar(Y/x) = E
(
Y 2/x
)
− E(Y/x)2

=
p2 (n− x) [(n− x)p2 + 1− p1 − p2]

(1− p1)2
−
(

p2 (n− x)
1− p1

)2

=
p2 (1− p1 − p2) (n− x)

(1− p1)2
.

Similarly, one can establish

E(X/y) =
p1(n− y)

1− p2
and V ar(X/y) =

p1 (1− p1 − p2) (n− y)
(1− p2)2

.

This completes the proof of the theorem.

Note that f(y/x) in the above theorem is a univariate binomial probability
density function. To see this observe that

(1− p1)x−n

(
n− x

y

)
py
2 (1− p1 − p2)

n−x−y

=
(

n− x

y

) (
p2

1− p1

)y (
1− p2

1− p1

)n−x−y

.

Hence, f(y/x) is a probability density function of a binomial random variable
with parameters n− x and p2

1−p1
.

The marginal density f2(y) of Y can be obtained similarly as

f2(y) =
(

n

y

)
py
2 (1− p2)

n−y ,
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where y = 0, 1, ..., n. The form of these densities show that the marginals of
bivariate binomial distribution are again binomial.

Example 11.4. Let W equal the weight of soap in a 1-kilogram box that is
distributed in India. Suppose P (W < 1) = 0.02 and P (W > 1.072) = 0.08.
Call a box of soap light, good, or heavy depending on whether W < 1,
1 ≤ W ≤ 1.072, or W > 1.072, respectively. In a random sample of 50 boxes,
let X equal the number of light boxes and Y the number of good boxes.
What are the regression and scedastic curves of Y on X?

Answer: The joint probability density function of X and Y is given by

f(x, y) =
50!

x! y! (50− x− y)!
px
1 py

2 (1− p1 − p2)50−x−y, 0 ≤ x + y ≤ 50,

where x and y are nonnegative integers. Hence, (X, Y ) ∼ BIN(n, p1, p2),
where n = 50, p1 = 0.02 and p2 = 0.90. The regression curve of Y on X is
given by

E(Y/x) =
p2 (n− x)

1− p1

=
0.9 (50− x)

1− 0.02

=
45
49

(50− x).

The scedastic curve of Y on X is the conditional variance of Y given X = x

and it equal to

V ar(Y/x) =
p2 (1− p1 − p2) (n− x)

(1− p1)2

=
0.9 0.08 (50− x)

(1− 0.02)2

=
180
2401

(50− x).

Note that if n = 1, then bivariate binomial distribution reduces to bi-
variate Bernoulli distribution.

11.3. Bivariate Geometric Distribution

Recall that if the random variable X denotes the trial number on which
first success occurs, then X is univariate geometric. The probability density
function of an univariate geometric variable is

f(x) = px−1 (1− p), x = 1, 2, 3, ...,∞,
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where p is the probability of failure in a single Bernoulli trial. This univari-
ate geometric distribution can be generalized to the bivariate case. Guldberg
(1934) introduced the bivariate geometric distribution and Lundberg (1940)
first used it in connection with problems of accident proneness. This distri-
bution has found many applications in various statistical methods.

Definition 11.3. A discrete bivariate random variable (X, Y ) is said to
have the bivariate geometric distribution with parameters p1 and p2 if its
joint probability density is of the form

f(x, y) =






(x+y)!
x! y! px

1 py
2 (1− p1 − p2) , if x, y = 0, 1, ...,∞

0 otherwise,

where 0 < p1, p2, p1 + p2 < 1. We denote a bivariate geometric random
variable by writing (X, Y ) ∼ GEO (p1, p2).

Example 11.5. Motor vehicles arriving at an intersection can turn right
or left or continue straight ahead. In a study of traffic patterns at this
intersection over a long period of time, engineers have noted that 40 percents
of the motor vehicles turn left, 25 percents turn right, and the remainder
continue straight ahead. For the next ten cars entering the intersection,
what is the probability that 5 cars will turn left, 4 cars will turn right, and
the last car will go straight ahead?

Answer: Let X denote the number of cars turning left and Y denote the
number of cars turning right. Since, the last car will go straight ahead,
the joint distribution of X and Y is geometric with parameters p1 = 0.4,
p2 = 0.25 and p3 = 1 − p1 − p2 = 0.35. For the next ten cars entering the
intersection, the probability that 5 cars will turn left, 4 cars will turn right,
and the last car will go straight ahead is given by

P (X = 5, Y = 4) = f(5, 4)

=
(x + y)!

x! y!
px
1 py

2 (1− p1 − p2)

=
(5 + 4)!

5! 4!
(0.4)5 (0.25)4 (1− 0.4− 0.25)

=
9!

5! 4!
(0.4)5 (0.25)4 (0.35)

= 0.00677.
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The following technical result is essential for proving the following theo-
rem. If a and b are positive real numbers with 0 < a + b < 1, then

∞∑

x=0

∞∑

y=0

(x + y)!
x! y!

ax by =
1

1− a− b
. (11.3)

In the following theorem, we present the expected values and the vari-
ances of X and Y , the covariance between X and Y , and the moment gen-
erating function.

Theorem 11.5. Let (X, Y ) ∼ GEO (p1, p2), where p1 and p2 are parame-
ters. Then

E(X) =
p1

1− p1 − p2

E(Y ) =
p2

1− p1 − p2

V ar(X) =
p1 (1− p2)

(1− p1 − p2)2

V ar(Y ) =
p2 (1− p1)

(1− p1 − p2)2

Cov(X, Y ) =
p1 p2

(1− p1 − p2)2

M(s, t) =
1− p1 − p2

1− p1es − p2et
.

Proof: We only find the joint moment generating function M(s, t) of X and
Y and leave proof of the rests to the reader of this book. The joint moment
generating function M(s, t) is given by

M(s, t) = E
(
esX+tY

)

=
n∑

x=0

n∑

y=0

esx+tyf(x, y)

=
n∑

x=0

n∑

y=0

esx+ty (x + y)!
x! y!

px
1 py

2 (1− p1 − p2)

= (1− p1 − p2)
n∑

x=0

n∑

y=0

(x + y)!
x! y!

(p1e
s)x (p2e

t
)y

=
(1− p1 − p2)

1− p1es − p2et
(by (11.3) ).
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The following results are needed for the next theorem. Let a be a positive
real number less than one. Then

∞∑

y=0

(x + y)!
x! y!

ay =
1

(1− a)x+1
, (11.4)

∞∑

y=0

(x + y)!
x! y!

y ay =
a(1 + x)

(1− a)x+2
, (11.5)

and
∞∑

y=0

(x + y)!
x! y!

y2 ay =
a(1 + x)

(1− a)x+3
[a(x + 1) + 1]. (11.6)

The next theorem presents some information regarding the conditional
densities f(x/y) and f(y/x).

Theorem 11.6. Let (X, Y ) ∼ GEO (p1, p2), where p1 and p2 are parame-
ters. Then the conditional distributions f(y/x) and f(x/y) are also geomet-
rical and

E(Y/x) =
p2 (1 + x)

1− p2

E(X/y) =
p1 (1 + y)

1− p1

V ar(Y/x) =
p2 (1 + x)
(1− p2)2

V ar(X/y) =
p1 (1 + y)
(1− p1)2

.

Proof: Again, as before, we first find the conditional probability density of
Y given the event X = x. The marginal density f1(x) is given by

f1(x) =
∞∑

y=0

f(x, y)

=
∞∑

y=0

(x + y)!
x! y!

px
1 py

2 (1− p1 − p2)

= (1− p1 − p2) px
1

∞∑

y=0

(x + y)!
x! y!

py
2

=
(1− p1 − p2) px

1

(1− p2)x+1
(by (11.4) ).
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Therefore the conditional density of Y given the event X = x is

f(y/x) =
f(x, y)
f1(x)

=
(x + y)!

x! y!
py
2 (1− p2)x+1.

The conditional expectation of Y given X = x is

E(Y/x) =
∞∑

y=0

y f(y/x)

=
∞∑

y=0

y
(x + y)!

x! y!
py
2 (1− p2)x+1

=
p2 (1 + x)
(1− p2)

(by (11.5) ).

Similarly, one can show that

E(X/y) =
p1 (1 + y)
(1− p1)

.

To compute the conditional variance of Y given the event that X = x, first
we have to find E

(
Y 2/x
)
, which is given by

E
(
Y 2/x
)

=
∞∑

y=0

y2 f(y/x)

=
∞∑

y=0

y2 (x + y)!
x! y!

py
2 (1− p2)x+1

=
p2 (1 + x)
(1− p2)2

[p2 (1 + x) + 1] (by (11.6) ).

Therefore

V ar
(
Y 2/x
)

= E
(
Y 2/x
)
− E(Y/x)2

=
p2 (1 + x)
(1− p2)2

[(p2 (1 + x) + 1]−
(

p2 (1 + x)
1− p2

)2

=
p2 (1 + x)
(1− p2)2

.

The rest of the moments can be determined in a similar manner. The proof
of the theorem is now complete.
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11.4. Bivariate Negative Binomial Distribution

The univariate negative binomial distribution can be generalized to the
bivariate case. Guldberg (1934) introduced this distribution and Lundberg
(1940) first used it in connection with problems of accident proneness. Arbous
and Kerrich (1951) arrived at this distribution by mixing parameters of the
bivariate Poisson distribution.

Definition 11.4. A discrete bivariate random variable (X, Y ) is said to have
the bivariate negative binomial distribution with parameters k, p1 and p2 if
its joint probability density is of the form

f(x, y) =






(x+y+k−1)!
x! y! (k−1)! px

1 py
2 (1− p1 − p2)

k , if x, y = 0, 1, ...,∞

0 otherwise,
where 0 < p1, p2, p1 + p2 < 1 and k is a nonzero positive integer. We
denote a bivariate negative binomial random variable by writing (X, Y ) ∼
NBIN (k, p1, p2).

Example 11.6. An experiment consists of selecting a marble at random and
with replacement from a box containing 10 white marbles, 15 black marbles
and 5 green marbles. What is the probability that it takes exactly 11 trials
to get 5 white, 3 black and the third green marbles at the 11th trial?

Answer: Let X denote the number of white marbles and Y denote the
number of black marbles. The joint distribution of X and Y is bivariate
negative binomial with parameters p1 = 1

3 , p2 = 1
2 , and k = 3. Hence the

probability that it takes exactly 11 trials to get 5 white, 3 black and the third
green marbles at the 11th trial is

P (X = 5, Y = 3) = f(5, 3)

=
(x + y + k − 1)!

x! y! (k − 1)!
px
1 py

2 (1− p1 − p2)
k

=
(5 + 3 + 3− 1)!

5! 3! (3− 1)!
(0.33)5 (0.5)3 (1− 0.33− 0.5)3

=
10!

5! 3! 2!
(0.33)5 (0.5)3 (0.17)3

= 0.0000503.

The negative binomial theorem which was treated in chapter 5 can be
generalized to

∞∑

x=0

∞∑

y=0

(x + y + k − 1)!
x! y! (k − 1)!

px
1 py

2 =
1

(1− p1 − p2)
k
. (11.7)
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In the following theorem, we present the expected values and the vari-
ances of X and Y , the covariance between X and Y , and the moment gen-
erating function.

Theorem 11.7. Let (X, Y ) ∼ NBIN (k, p1, p2), where k, p1 and p2 are
parameters. Then

E(X) =
k p1

1− p1 − p2

E(Y ) =
k p2

1− p1 − p2

V ar(X) =
k p1 (1− p2)

(1− p1 − p2)2

V ar(Y ) =
k p2 (1− p1)

(1− p1 − p2)2

Cov(X, Y ) =
k p1 p2

(1− p1 − p2)2

M(s, t) =
(1− p1 − p2)

k

(1− p1es − p2et)k
.

Proof: We only find the joint moment generating function M(s, t) of the
random variables X and Y and leave the rests to the reader. The joint
moment generating function is given by

M(s, t) = E
(
esX+tY

)

=
∞∑

x=0

∞∑

y=0

esx+ty f(x, y)

=
∞∑

x=0

∞∑

y=0

esx+ty (x + y + k − 1)!
x! y! (k − 1)!

px
1 py

2 (1− p1 − p2)
k

= (1− p1 − p2)
k

∞∑

x=0

∞∑

y=0

(x + y + k − 1)!
x! y! (k − 1)!

(es p1)
x (et p2

)y

=
(1− p1 − p2)

k

(1− p1es − p2et)k
(by (11.7)).

This completes the proof of the theorem.

To establish the next theorem, we need the following two results. If a is
a positive real constant in the interval (0, 1), then

∞∑

y=0

(x + y + k − 1)!
x! y! (k − 1)!

ay =
1 (x + k)

(1− a)x+k
, (11.8)
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∞∑

y=0

y
(x + y + k − 1)!

x! y! (k − 1)!
ay =

a (x + k)
(1− a)x+k+1

, (11.9)

and
∞∑

y=0

y2 (x + y + k − 1)!
x! y! (k − 1)!

ay =
a (x + k)

(1− a)x+k+2
[1 + (x + k)a] . (11.10)

The next theorem presents some information regarding the conditional
densities f(x/y) and f(y/x).

Theorem 11.8. Let (X, Y ) ∼ NBIN (k, p1, p2), where p1 and p2 are pa-
rameters. Then the conditional densities f(y/x) and f(x/y) are also negative
binomial and

E(Y/x) =
p2 (k + x)

1− p2

E(X/y) =
p1 (k + y)

1− p1

V ar(Y/x) =
p2 (k + x)
(1− p2)2

V ar(X/y) =
p1 (k + y)
(1− p1)2

.

Proof: First, we find the marginal density of X. The marginal density f1(x)
is given by

f1(x) =
∞∑

y=0

f(x, y)

=
∞∑

y=0

(x + y + k − 1)!
x! y! (k − 1)!

px
1 py

2

= (1− p1 − p2)
k px

1
(x + y + k − 1)!

x! y! (k − 1)!
py
2

= (1− p1 − p2)
k px

1
1

(1− p2)x+k
(by (11.8)).

The conditional density of Y given the event X = x is

f(y/x) =
f(x, y)
f1(x)

=
(x + y + k − 1)!

x! y! (k − 1)!
py
2 (1− p2)x+k.
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The conditional expectation E(Y/x) is given by

E (Y/x) =
∞∑

x=0

∞∑

y=0

y
(x + y + k − 1)!

x! y! (k − 1)!
py
2 (1− p2)x+k

= (1− p2)x+k
∞∑

x=0

∞∑

y=0

y
(x + y + k − 1)!

x! y! (k − 1)!
py
2

= (1− p2)x+k p2 (x + k)
(1− p2)x+k+1

(by (11.9))

=
p2 (x + k)
(1− p2)

.

The conditional expectation E
(
Y 2/x
)

can be computed as follows

E
(
Y 2/x
)

=
∞∑

x=0

∞∑

y=0

y2 (x + y + k − 1)!
x! y! (k − 1)!

py
2 (1− p2)x+k

= (1− p2)x+k
∞∑

x=0

∞∑

y=0

y2 (x + y + k − 1)!
x! y! (k − 1)!

py
2

= (1− p2)x+k p2 (x + k)
(1− p2)x+k+2

[1 + (x + k) p2] (by (11.10))

=
p2 (x + k)
(1− p2)2

[1 + (x + k) p2].

The conditional variance of Y given X = x is

V ar (Y/x) = E
(
Y 2/x
)
− E (Y/x)2

=
p2 (x + k)
(1− p2)2

[1 + (x + k) p2]−
(

p2 (x + k)
(1− p2)

)2

=
p2 (x + k)
(1− p2)2

.

The conditional expected value E(X/y) and conditional variance V ar(X/y)
can be computed in a similar way. This completes the proof.

Note that if k = 1, then bivariate negative binomial distribution reduces
to bivariate geometric distribution.

11.5. Bivariate Hypergeometric Distribution

The univariate hypergeometric distribution can be generalized to the bi-
variate case. Isserlis (1914) introduced this distribution and Pearson (1924)
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gave various properties of this distribution. Pearson also fitted this distri-
bution to an observed data of the number of cards of a certain suit in two
hands at whist.

Definition 11.5. A discrete bivariate random variable (X, Y ) is said to have
the bivariate hypergeometric distribution with parameters r, n1, n2, n3 if its
joint probability distribution is of the form

f(x, y) =






(n1
x ) (n2

y ) ( n3
r−x−y)

(n1+n2+n3
r ) , if x, y = 0, 1, ..., r

0 otherwise,

where x ≤ n1, y ≤ n2, r − x− y ≤ n3 and r is a positive integer less than or
equal to n1 +n2 +n3. We denote a bivariate hypergeometric random variable
by writing (X, Y ) ∼ HY P (r, n1, n2, n3).

Example 11.7. A panel of prospective jurors includes 6 african american, 4
asian american and 9 white american. If the selection is random, what is the
probability that a jury will consists of 4 african american, 3 asian american
and 5 white american?

Answer: Here n1 = 7, n2 = 3 and n3 = 9 so that n = 19. A total of 12
jurors will be selected so that r = 12. In this example x = 4, y = 3 and
r − x − y = 5. Hence the probability that a jury will consists of 4 african
american, 3 asian american and 5 white american is

f(4, 3) =
(7
4

) (3
3

) (9
5

)
(19
12

) =
4410
50388

= 0.0875.

Example 11.8. Among 25 silver dollars struck in 1903 there are 15 from
the Philadelphia mint, 7 from the New Orleans mint, and 3 from the San
Francisco. If 5 of these silver dollars are picked at random, what is the
probability of getting 4 from the Philadelphia mint and 1 from the New
Orleans?

Answer: Here n = 25, r = 5 and n1 = 15, n2 = 7, n3 = 3. The the
probability of getting 4 from the Philadelphia mint and 1 from the New
Orleans is

f(4, 1) =
(15

4

) (7
1

) (3
0

)
(25

5

) =
9555
53130

= 0.1798.

In the following theorem, we present the expected values and the vari-
ances of X and Y , and the covariance between X and Y .
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Theorem 11.9. Let (X, Y ) ∼ HY P (r, n1, n2, n3), where r, n1, n2 and n3

are parameters. Then

E(X) =
r n1

n1 + n2 + n3

E(Y ) =
r n2

n1 + n2 + n3

V ar(X) =
r n1 (n2 + n3)

(n1 + n2 + n3)2

(
n1 + n2 + n3 − r

n1 + n2 + n3 − 1

)

V ar(Y ) =
r n2 (n1 + n3)

(n1 + n2 + n3)2

(
n1 + n2 + n3 − r

n1 + n2 + n3 − 1

)

Cov(X, Y ) = − r n1 n2

(n1 + n2 + n3)2

(
n1 + n2 + n3 − r

n1 + n2 + n3 − 1

)
.

Proof: We find only the mean and variance of X. The mean and variance
of Y can be found in a similar manner. The covariance of X and Y will be
left to the reader as an exercise. To find the expected value of X, we need
the marginal density f1(x) of X. The marginal of X is given by

f1(x) =
r−x∑

y=0

f(x, y)

=
r−x∑

y=0

(n1
x

) (n2
y

) ( n3
r−x−y

)
(n1+n2+n3

r

)

=
(n1

x

)
(n1+n2+n3

r

)
r−x∑

y=0

(
n2

y

)(
n3

r − x− y

)

=
(n1

x

)
(n1+n2+n3

r

)
(

n2 + n3

r − x

)
(by Theorem 1.3)

This shows that X ∼ HY P (n1, n2 + n3, r). Hence, by Theorem 5.7, we get

E(X) =
r n1

n1 + n2 + n3
,

and
V ar(X) =

r n1 (n2 + n3)
(n1 + n2 + n3)2

(
n1 + n2 + n3 − r

n1 + n2 + n3 − 1

)
.

Similarly, the random variable Y ∼ HY P (n2, n1 + n3, r). Hence, again by
Theorem 5.7, we get

E(Y ) =
r n2

n1 + n2 + n3
,
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and
V ar(Y ) =

r n2 (n1 + n3)
(n1 + n2 + n3)2

(
n1 + n2 + n3 − r

n1 + n2 + n3 − 1

)
.

The next theorem presents some information regarding the conditional
densities f(x/y) and f(y/x).

Theorem 11.10. Let (X, Y ) ∼ HY P (r, n1, n2, n3), where r, n1, n2 and n3

are parameters. Then the conditional distributions f(y/x) and f(x/y) are
also hypergeometric and

E(Y/x) =
n2 (r − x)
n2 + n3

E(X/y) =
n1 (r − y)
n1 + n3

V ar(Y/x) =
n2n3

n2 + n3 − 1

(
n1 + n2 + n3 − x

n2 + n3

) (
x− n1

n2 + n3

)

V ar(X/y) =
n1n3

n1 + n3 − 1

(
n1 + n2 + n3 − y

n1 + n3

) (
y − n2

n1 + n3

)
.

Proof: To find E(Y/x), we need the conditional density f(y/x) of Y given
the event X = x. The conditional density f(y/x) is given by

f(y/x) =
f(x, y)
f1(x)

=

(n2
y

) ( n3
r−x−y

)
(n2+n3

r−x

) .

Hence, the random variable Y given X = x is a hypergeometric random
variable with parameters n2, n3, and r − x, that is

Y/x ∼ HY P (n2, n3, r − x).

Hence, by Theorem 5.7, we get

E(Y/x) =
n2 (r − x)
n2 + n3

and

V ar(Y/x) =
n2n3

n2 + n3 − 1

(
n1 + n2 + n3 − x

n2 + n3

) (
x− n1

n2 + n3

)
.
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Similarly, one can find E(X/y) and V ar(X/y). The proof of the theorem is
now complete.

11.6. Bivariate Poisson Distribution

The univariate Poisson distribution can be generalized to the bivariate
case. In 1934, Campbell, first derived this distribution. However, in 1944,
Aitken gave the explicit formula for the bivariate Poisson distribution func-
tion. In 1964, Holgate also arrived at the bivariate Poisson distribution by
deriving the joint distribution of X = X1 + X3 and Y = X2 + X3, where
X1, X2, X3 are independent Poisson random variables. Unlike the previous
bivariate distributions, the conditional distributions of bivariate Poisson dis-
tribution are not Poisson. In fact, Seshadri and Patil (1964), indicated that
no bivariate distribution exists having both marginal and conditional distri-
butions of Poisson form.

Definition 11.6. A discrete bivariate random variable (X, Y ) is said to
have the bivariate Poisson distribution with parameters λ1, λ2, λ3 if its joint
probability density is of the form

f(x, y) =






e(−λ1−λ2+λ3) (λ1−λ3)
x (λ2−λ3)

y

x! y! ψ(x, y) for x, y = 0, 1, ...,∞

0 otherwise,

where

ψ(x, y) :=
min(x,y)∑

r=0

x(r) y(r) λr
3

(λ1 − λ3)r (λ2 − λ3)r r!

with

x(r) := x(x− 1) · · · (x− r + 1),

and λ1 > λ3 > 0, λ2 > λ3 > 0 are parameters. We denote a bivariate Poisson
random variable by writing (X, Y ) ∼ POI (λ1, λ2, λ3).

In the following theorem, we present the expected values and the vari-
ances of X and Y , the covariance between X and Y and the joint moment
generating function.

Theorem 11.11. Let (X, Y ) ∼ POI (λ1, λ2, λ3), where λ1, λ2 and λ3 are
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parameters. Then

E(X) = λ1

E(Y ) = λ2

V ar(X) = λ1

V ar(Y ) = λ2

Cov(X, Y ) = λ3

M(s, t) = e−λ1−λ2−λ3+λ1es+λ2et+λ3es+t

.

The next theorem presents some special characteristics of the conditional
densities f(x/y) and f(y/x).

Theorem 11.12. Let (X, Y ) ∼ POI (λ1, λ2, λ3), where λ1, λ2 and λ3 are
parameters. Then

E(Y/x) = λ2 − λ3 +
(
λ3

λ1

)
x

E(X/y) = λ1 − λ3 +
(
λ3

λ2

)
y

V ar(Y/x) = λ2 − λ3 +
(
λ3 (λ1 − λ3)

λ2
1

)
x

V ar(X/y) = λ1 − λ3 +
(
λ3 (λ2 − λ3)

λ2
2

)
y.

11.7. Review Exercises

1. A box contains 10 white marbles, 15 black marbles and 5 green marbles.
If 10 marbles are selected at random and without replacement, what is the
probability that 5 are white, 3 are black and 2 are green?

2. An urn contains 3 red balls, 2 green balls and 1 yellow ball. Three balls
are selected at random and without replacement from the urn. What is the
probability that at least 1 color is not drawn?

3. An urn contains 4 red balls, 8 green balls and 2 yellow balls. Five balls
are randomly selected, without replacement, from the urn. What is the
probability that 1 red ball, 2 green balls, and 2 yellow balls will be selected?

4. From a group of three Republicans, two Democrats, and one Independent,
a committee of two people is to be randomly selected. If X denotes the
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number of Republicans and Y the number of Democrats on the committee,
then what is the variance of Y given that X = x?

5. If X equals the number of ones and Y the number of twos and threes
when a four fair dice are rolled, then what is the conditional variance of X

and Y = 1?

6. Motor vehicles arriving at an intersection can turn right or left or continue
straight ahead. In a study of traffic patterns at this intersection over a long
period of time, engineers have noted that 40 percents of the motor vehicles
turn left, 25 percents turn right, and the remainder continue straight ahead.
For the next five cars entering the intersection, what is the probability that
at least one turn right? (Answer: 0.7627)

7. Among a large number of applicants for a certain position, 60 percents
have only a high school education, 30 percents have some college training,
and 10 percents have completed a college degree. If 5 applicants are randomly
selected to be interviewed, what is the probability that at least one will have
completed a college degree?

8. In a population of 200 students who have just completed a first course
in calculus, 50 have earned A’s, 80 B’s and remaining earned F ’s. A sample
of size 25 is taken at random and without replacement from this population.
What is the probability that 10 students have A’s, 12 students have B’s and
3 students have F ’s ?

9. If X equals the number of ones and Y the number of twos and threes
when a four fair dice are rolled, then what is the correlation coefficient of X

and Y ?

10. If the joint moment generating function of X and Y is M(s, t) =

k
(

4
7−es−2et

)5
, then what is the value of the constant k? What is the corre-

lation coefficient between X and Y ?

11. A die with 1 painted on three sides, 2 painted on two sides, and 3 painted
on one side is rolled 15 times. What is the probability that we will get eight
1’s, six 2’s and a 3 on the last roll?

12. The output of a machine is graded excellent 80 percents of time, good 15
percents of time, and defective 5 percents of time. What is the probability
that a random sample of size 15 has 10 excellent, 3 good, and 2 defective
items?
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13. An industrial product is graded by a machine excellent 80 percents of
time, good 15 percents of time, and defective 5 percents of time. A random
sample of 15 items is graded. What is the probability that machine will grade
10 excellent, 3 good, and 2 defective of which one being the last one graded?

14. If (X, Y ) ∼ HY P (n1, n2, n3, r), then what is the covariance of the
random variables X and Y ?
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Chapter 12

SOME
SPECIAL CONTINUOUS

BIVARIATE DISTRIBUTIONS

In this chapter, we study some well known continuous bivariate probabil-
ity density functions. First, we present the natural extensions of univariate
probability density functions that were treated in chapter 6. Then we present
some other bivariate distributions that have been reported in the literature.
The bivariate normal distribution has been treated in most textbooks be-
cause of its dominant role in the statistical theory. The other continuous
bivariate distributions rarely treated in any textbooks. It is in this textbook,
well known bivariate distributions have been treated for the first time. The
monograph of K.V. Mardia gives an excellent exposition on various bivariate
distributions. We begin this chapter with the bivariate uniform distribution.

12.1. Bivariate Uniform Distribution

In this section, we study Morgenstern bivariate uniform distribution in
detail. The marginals of Morgenstern bivariate uniform distribution are uni-
form. In this sense, it is an extension of univariate uniform distribution.
Other bivariate uniform distributions will be pointed out without any in
depth treatment.

In 1956, Morgenstern introduced a one-parameter family of bivariate
distributions whose univariate marginal are uniform distributions by the fol-
lowing formula

f(x, y) = f1(x) f2(y) ( 1 + α [2F1(x)− 1] [2F2(y)− 1] ) ,
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where α ∈ [−1, 1] is a parameter. If one assumes The cdf Fi(x) = x and
the pdf fi(x) = 1 (i = 1, 2), then we arrive at the Morgenstern uniform
distribution on the unit square. The joint probability density function f(x, y)
of the Morgenstern uniform distribution on the unit square is given by

f(x, y) = 1 + α (2x− 1) (2y − 1), 0 < x, y ≤ 1, −1 ≤ α ≤ 1.

Next, we define the Morgenstern uniform distribution on an arbitrary
rectangle [a, b]× [c, d].

Definition 12.1. A continuous bivariate random variable (X, Y ) is said to
have the bivariate uniform distribution on the rectangle [a, b] × [c, d] if its
joint probability density function is of the form

f(x, y) =






1+α ( 2x−2a
b−a −1)( 2y−2c

d−c −1)
(b−a) (d−c) for x ∈ [a, b] y ∈ [c, d]

0 otherwise ,

where α is an apriori chosen parameter in [−1, 1]. We denote a Morgenstern
bivariate uniform random variable on a rectangle [a, b] × [c, d] by writing
(X, Y ) ∼ UNIF (a, b, c, d, α).

The following figures show the graph and the equi-density curves of
f(x, y) on unit square with α = 0.5.

In the following theorem, we present the expected values, the variances
of the random variables X and Y , and the covariance between X and Y .

Theorem 12.1. Let (X, Y ) ∼ UNIFM(a, b, c, d, α), where a, b, c, d and α
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are parameters. Then

E(X) =
b + a

2

E(Y ) =
d + c

2

V ar(X) =
(b− a)2

12

V ar(Y ) =
(d− c)2

12

Cov(X, Y ) =
1
36
α (b− a) (d− c).

Proof: First, we determine the marginal density of X which is given by

f1(x) =
∫ d

c
f(x, y) dy

=
∫ d

c

1 + α
(

2x−2a
b−a − 1

)(
2y−2c
d−c − 1

)

(b− a) (d− c)
dy

=
1

b− a
.

Thus, the marginal density of X is uniform on the interval from a to b. That
is X ∼ UNIF (a, b). Hence by Theorem 6.1, we have

E(X) =
b + a

2
and V ar(X) =

(b− a)2

12
.

Similarly, one can show that Y ∼ UNIF (c, d) and therefore by Theorem 6.1

E(Y ) =
d + c

2
and V ar(Y ) =

(d− c)2

12
.

The product moment of X and Y is

E(XY ) =
∫ b

a

∫ d

c
xy f(x, y) dx dy

=
∫ b

a

∫ d

c
xy

1 + α
(

2x−2a
b−a − 1

)(
2y−2c
d−c − 1

)

(b− a) (d− c)
dx dy

=
1
36
α (b− a) (d− c) +

1
4

(b + a) (d + c).
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Thus, the covariance of X and Y is

Cov(X, Y ) = E(XY )− E(X) E(Y )

=
1
36
α (b− a) (d− c) +

1
4

(b + a) (d + c)− 1
4

(b + a) (d + c)

=
1
36
α (b− a) (d− c).

This completes the proof of the theorem.

In the next theorem, we states some information related to the condi-
tional densities f(y/x) and f(x/y).

Theorem 12.2. Let (X, Y ) ∼ UNIF (a, b, c, d, α), where a, b, c, d and α are
parameters. Then

E(Y/x) =
d + c

2
+

α

6 (b− a)
(
c2 + 4cd + d2

) (2x− 2a

b− a
− 1
)

E(X/y) =
b + a

2
+

α

6 (b− a)
(
a2 + 4ab + b2

) (2y − 2c

d− c
− 1
)

V ar(Y/x) =
1
36

(
d− c

b− a

)2 [
α2(a + b) (4x− a− b) + 3(b− a)2 − 4α2x2

]

V ar(X/y) =
1
36

(
b− a

d− c

)2 [
α2(c + d) (4y − c− d) + 3(d− c)2 − 4α2y2

]
.

Proof: First, we determine the conditional density function f(y/x). Recall
that f1(x) = 1

b−a . Hence,

f(y/x) =
1

d− c

[
1 + α
(

2x− 2a

b− a
− 1
) (

2y − 2c

d− c
− 1
)]

.
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The conditional expectation E(Y/x) is given by

E(Y/x) =
∫ d

c
y f(y/x) dy

=
1

d− c

∫ d

c
y

[
1 + α
(

2x− 2a

b− a
− 1
) (

2y − 2c

d− c
− 1
)]

dy

=
d + c

2
+

α

6 (d− c)2

(
2x− 2a

b− a
− 1
) [

d3 − c3 + 3dc2 − 3cd2
]

=
d + c

2
+

α

6 (d− c)

(
2x− 2a

b− a
− 1
) [

d2 + 4dc + c2
]
.

Similarly, the conditional expectation E
(
Y 2/x
)

is given by

E
(
Y 2/x
)

=
∫ d

c
y2 f(y/x) dy

=
1

d− c

∫ d

c
y2

[
1 + α
(

2x− 2a

b− a
− 1
) (

2y − 2c

d− c
− 1
)]

dy

=
1

d− c

[
d2 − c2

2
+
α

d− c

(
2x− 2a

b− a
− 1
)

1
6
(
d2 − c2

)
(d− c)2

]

=
d + c

2
+

1
6
α
(
d2 − c2

) (2x− 2a

b− a
− 1
)

=
d + c

2

[
1 +
α

3
(d− c)

(
2x− 2a

b− a
− 1
)]

.

Therefore, the conditional variance of Y given the event X = x is

V ar(Y/x) = E
(
Y 2/x
)
− E(Y/x)2

=
1
36

(
d− c

b− a

)2 [
α2(a + b)(4x− a− b) + 3(b− a)2 − 4α2x2

]
.

The conditional expectation E(X/y) and the conditional variance V ar(X/y)
can be found in a similar manner. This completes the proof of the theorem.

The following figure illustrate the regression and scedastic curves of the
Morgenstern uniform distribution function on unit square with α = 0.5.
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Next, we give a definition of another generalized bivariate uniform dis-
tribution.

Definition 12.2. Let S ⊂ IR2 be a region in the Euclidean plane IR2 with
area A. The random variables X and Y is said to be bivariate uniform over
S if the joint density of X and Y is of the form

f(x, y) =

{ 1
A for (x, y) ∈ S

0 otherwise .

In 1965, Plackett constructed a class of bivariate distribution F (x, y) for
given marginals F1(x) and F2(y) as the square root of the equation

(α− 1) F (x, y)2 − {1 + (α− 1) [F1(x) + F2(y)] } F (x, y) + αF1(x) F2(y) = 0

(where 0 < α <∞) which satisfies the Fréchet inequalities

max {F1(x) + F2(y)− 1, 0} ≤ F (x, y) ≤ min {F1(x), F2(y)} .

The class of bivariate joint density function constructed by Plackett is the
following

f(x, y) = α f1(x) f2(y)
[(α− 1) {F1(x) + F2(y)− 2F1(x)F2(y)} + 1]

[S(x, y)2 − 4α (α− 1) F1(x) F2(y)]
3
2

,

where
S(x, y) = 1 + (α− 1) (F1(x) + F2(y)) .

If one takes Fi(x) = x and fi(x) = 1 (for i = 1, 2), then the joint density
function constructed by Plackett reduces to

f(x, y) = α
[(α− 1) {x + y − 2xy} + 1]

[{1 + (α− 1)(x + y)}2 − 4α (α− 1) xy]
3
2
,
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where 0 ≤ x, y ≤ 1, and α > 0. But unfortunately this is not a bivariate
density function since this bivariate density does not integrate to one. This
fact was missed by both Plackett (1965) and Mardia (1967).

12.2. Bivariate Cauchy Distribution

Recall that univariate Cauchy probability distribution was defined in
Chapter 3 as

f(x) =
θ

π
[
θ + (x− α)2

] , −∞ < x <∞,

where α > 0 and θ are real parameters. The parameter α is called the
location parameter. In Chapter 4, we have pointed out that any random
variable whose probability density function is Cauchy has no moments. This
random variable is further, has no moment generating function. The Cauchy
distribution is widely used for instructional purposes besides its statistical
use. The main purpose of this section is to generalize univariate Cauchy
distribution to bivariate case and study its various intrinsic properties. We
define the bivariate Cauchy random variables by using the form of their joint
probability density function.

Definition 12.3. A continuous bivariate random variable (X, Y ) is said to
have the bivariate Cauchy distribution if its joint probability density function
is of the form

f(x, y) =
θ

2π [ θ2 + (x− α)2 + (y − β)2 ]
3
2
, −∞ < x, y <∞,

where θ is a positive parameter and α and β are location parameters. We de-
note a bivariate Cauchy random variable by writing (X, Y ) ∼ CAU(θ, α, β).

The following figures show the graph and the equi-density curves of the
Cauchy density function f(x, y) with parameters α = 0 = β and θ = 0.5.
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The bivariate Cauchy distribution can be derived by considering the
distribution of radio active particles emanating from a source that hit a
two-dimensional screen. This distribution is a special case of the bivariate
t-distribution which was first constructed by Karl Pearson in 1923.

The following theorem shows that if a bivariate random variable (X, Y ) is
Cauchy, then it has no moments like the univariate Cauchy random variable.
Further, for a bivariate Cauchy random variable (X, Y ), the covariance (and
hence the correlation) between X and Y does not exist.

Theorem 12.3. Let (X, Y ) ∼ CAU(θ, α, β), where θ > 0, α and β are pa-
rameters. Then the moments E(X), E(Y ), V ar(X), V ar(Y ), and Cov(X, Y )
do not exist.

Proof: In order to find the moments of X and Y , we need their marginal
distributions. First, we find the marginal of X which is given by

f1(x) =
∫ ∞

−∞
f(x, y) dy

=
∫ ∞

−∞

θ

2π [ θ2 + (x− α)2 + (y − β)2 ]
3
2

dy.

To evaluate the above integral, we make a trigonometric substitution

y = β +
√

[θ2 + (x− α)2] tanψ.

Hence

dy =
√

[θ2 + (x− α)2] sec2 ψ dψ

and
[
θ2 + (x− α)2 + (y − β)2

] 3
2

=
[
θ2 + (x− α)2

] 3
2
(
1 + tan2 ψ

) 3
2

=
[
θ2 + (x− α)2

] 3
2 sec3 ψ.



Probability and Mathematical Statistics 325

Using these in the above integral, we get
∫ ∞

−∞

θ

2π [ θ2 + (x− α)2 + (y − β)2 ]
3
2

dy

=
θ

2π

∫ π
2

−π
2

√
[θ2 + (x− α)2] sec2 ψ dψ

[θ2 + (x− α)2]
3
2 sec3 ψ

=
θ

2π [θ2 + (x− α)2]

∫ π
2

−π
2

cosψ dψ

=
θ

π [θ2 + (x− α)2] .

Hence, the marginal of X is a Cauchy distribution with parameters θ and α.
Thus, for the random variable X, the expected value E(X) and the variance
V ar(X) do not exist (see Example 4.2). In a similar manner, it can be shown
that the marginal distribution of Y is also Cauchy with parameters θ and β
and hence E(Y ) and V ar(Y ) do not exist. Since

Cov(X, Y ) = E(XY )− E(X) E(Y ),

it easy to note that Cov(X, Y ) also does not exist. This completes the proof
of the theorem.

The conditional distribution of Y given the event X = x is given by

f(y/x) =
f(x, y)
f1(x)

=
1
2

θ2 + (x− α)2

[ θ2 + (x− α)2 + (y − β)2 ]
3
2
.

Similarly, the conditional distribution of X given the event Y = y is

f(y/x) =
1
2

θ2 + (y − β)2

[ θ2 + (x− α)2 + (y − β)2 ]
3
2
.

Next theorem states some properties of the conditional densities f(y/x) and
f(x/y).

Theorem 12.4. Let (X, Y ) ∼ CAU(θ, α, β), where θ > 0, α and β are
parameters. Then the conditional expectations

E(Y/x) = β

E(X/y) = α,
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and the conditional variances V ar(Y/x) and V ar(X/y) do not exist.

Proof: First, we show that E(Y/x) is β. The conditional expectation of Y

given the event X = x can be computed as

E(Y/x) =
∫ ∞

−∞
y f(y/x) dy

=
∫ ∞

−∞
y

1
2

θ2 + (x− α)2

[ θ2 + (x− α)2 + (y − β)2 ]
3
2

dy

=
1
4
[
θ2 + (x− α)2

] ∫ ∞

−∞

d
(
θ2 + (x− α)2 + (y − β)2

)

[ θ2 + (x− α)2 + (y − β)2 ]
3
2

+
β

2
[
θ2 + (x− α)2

] ∫ ∞

−∞

dy

[ θ2 + (x− α)2 + (y − β)2 ]
3
2

=
1
4
[
θ2 + (x− α)2

]
[
− 2√

θ2 + (x− α)2 + (y − β)2

]∞

−∞

+
β

2
[
θ2 + (x− α)2

] ∫ π
2

−π
2

cosψ dψ

[θ2 + (x− α)2]
= 0 + β

= β.

Similarly, it can be shown that E(X/y) = α. Next, we show that the con-
ditional variance of Y given X = x does not exist. To show this, we need
E
(
Y 2/x
)
, which is given by

E
(
Y 2/x
)

=
∫ ∞

−∞
y2 1

2
θ2 + (x− α)2

[ θ2 + (x− α)2 + (y − β)2 ]
3
2

dy.

The above integral does not exist and hence the conditional second moment
of Y given X = x does not exist. As a consequence, the V ar(Y/x) also does
not exist. Similarly, the variance of X given the event Y = y also does not
exist. This completes the proof of the theorem.

12.3. Bivariate Gamma Distributions

In this section, we present three different bivariate gamma probability
density functions and study some of their intrinsic properties.

Definition 12.4. A continuous bivariate random variable (X, Y ) is said to
have the bivariate gamma distribution if its joint probability density function
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is of the form

f(x, y) =






(xy)
1
2 (α−1)

(1−θ) Γ(α) θ
1
2 (α−1)

e−
x+y
1−θ Iα−1

(
2
√

θ xy

1−θ

)
if 0 ≤ x, y <∞

0 otherwise,

where θ ∈ [0, 1) and α > 0 are parameters, and

Ik(z) :=
∞∑

r=0

(
1
2 z
)k+2r

r! Γ(k + r + 1)
.

As usual, we denote this bivariate gamma random variable by writing
(X, Y ) ∼ GAMK(α, θ). The function Ik(z) is called the modified Bessel
function of the first kind of order k. In explicit form f(x, y) is given by

f(x, y) =






1
θα−1 Γ(α) e−

x+y
1−θ

∞∑

k=0

(θ x y)α+k−1

k! Γ(α+ k) (1− θ)α+2k
for 0 ≤ x, y <∞

0 otherwise.

The following figures show the graph of the joint density function f(x, y)
of a bivariate gamma random variable with parameters α = 1 and θ = 0.5
and the equi-density curves of f(x, y).

In 1941, Kibble found this bivariate gamma density function. However,
Wicksell in 1933 had constructed the characteristic function of this bivariate
gamma density function without knowing the explicit form of this density
function. If { (Xi, Yi ) | i = 1, 2, ..., n} is a random sample from a bivariate
normal distribution with zero means, then the bivariate random variable

(X, Y ), where X = 1
n

n∑

i=1

X2
i and Y = 1

n

n∑

i=1

Y 2
i , has bivariate gamma distri-

bution. This fact was established by Wicksell by finding the characteristic
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function of (X, Y ). This bivariate gamma distribution has found applications
in noise theory (see Rice (1944, 1945)).

The following theorem provides us some important characteristic of the
bivariate gamma distribution of Kibble.

Theorem 12.5. Let the random variable (X, Y ) ∼ GAMK(α, θ), where
0 < α < ∞ and 0 ≤ θ < 1 are parameters. Then the marginals of X and Y

are univariate gamma and

E(X) = α

E(Y ) = α

V ar(X) = α

V ar(Y ) = α

Cov(X, Y ) = α θ

M(s, t) =
1

[(1− s) (1− t)− θ s t]α
.

Proof: First, we show that the marginal distribution of X is univariate
gamma with parameter α (and θ = 1). The marginal density of X is given
by

f1(x) =
∫ ∞

0
f(x, y) dy

=
∫ ∞

0

1
θα−1 Γ(α)

e−
x+y
1−θ

∞∑

k=0

(θ x y)α+k−1

k! Γ(α+ k) (1− θ)α+2k
dy

=
∞∑

k=0

1
θα−1 Γ(α)

e−
x

1−θ
(θ x)α+k−1

k! Γ(α+ k) (1− θ)α+2k

∫ ∞

0
yα+k−1 e−

y
1−θ dy

=
∞∑

k=0

1
θα−1 Γ(α)

e−
x

1−θ
(θ x)α+k−1

k! Γ(α+ k) (1− θ)α+2k
(1− θ)α+k Γ(α+ k)

=
∞∑

k=0

(
θ

1− θ

)k 1
k! Γ(α)

xα+k−1 e−
x

1−θ

=
1

Γ(α)
xα−1 e−

x
1−θ

∞∑

k=0

1
k!

(
xθ

1− θ

)k

=
1

Γ(α)
xα−1 e−

x
1−θ e

xθ
1−θ

=
1

Γ(α)
xα−1 e−x.
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Thus, the marginal distribution of X is gamma with parameters α and θ = 1.
Therefore, by Theorem 6.3, we obtain

E(X) = α, V ar(X) = α.

Similarly, we can show that the marginal density of Y is gamma with param-
eters α and θ = 1. Hence, we have

E(Y ) = α, V ar(Y ) = α.

The moment generating function can be computed in a similar manner and
we leave it to the reader. This completes the proof of the theorem.

The following results are needed for the next theorem. From calculus we
know that

ez =
∞∑

k=0

zk

k!
, (12.1)

and the infinite series on the right converges for all z ∈ IR. Differentiating
both sides of (12.1) and then multiplying the resulting expression by z, one
obtains

zez =
∞∑

k=0

k
zk

k!
. (12.2)

If one differentiates (12.2) again with respect to z and multiply the resulting
expression by z, then he/she will get

zez + z2ez =
∞∑

k=0

k2 zk

k!
. (12.3)

Theorem 12.6. Let the random variable (X, Y ) ∼ GAMK(α, θ), where
0 < α <∞ and 0 ≤ θ < 1 are parameters. Then

E(Y/x) = θ x + (1− θ)α
E(X/y) = θ y + (1− θ)α

V ar(Y/x) = (1− θ) [ 2θ x + (1− θ)α ]

V ar(X/y) = (1− θ) [ 2θ y + (1− θ)α ].
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Proof: First, we will find the conditional probability density function Y

given X = x, which is given by

f(y/x)

=
f(x, y)
f1(x)

=
1

θα−1 xα−1 e−x
e−

x+y
1−θ

∞∑

k=0

(θ x y)α+k−1

k! Γ(α+ k) (1− θ)α+2k

= ex− x
1−θ

∞∑

k=0

1
Γ(α+ k) (1− θ)α+2k

(θ x)k

k!
yα+k−1 e−

y
1−θ .

Next, we compute the conditional expectation of Y given the event X = x.
The conditional expectation E(Y/x) is given by

E(Y/x)

=
∫ ∞

0
y f(y/x) dy

=
∫ ∞

0
y ex− x

1−θ

∞∑

k=0

1
Γ(α+ k) (1− θ)α+2k

(θ x)k

k!
yα+k−1 e−

y
1−θ dy

= ex− x
1−θ

∞∑

k=0

1
Γ(α+ k) (1− θ)α+2k

(θ x)k

k!

∫ ∞

0
yα+k e−

y
1−θ dy

= ex− x
1−θ

∞∑

k=0

1
Γ(α+ k) (1− θ)α+2k

(θ x)k

k!
(1− θ)α+k+1 Γ(α+ k)

= (1− θ) ex− x
1−θ

∞∑

k=0

(α+ k)
1
k!

(
θ x

1− θ

)k

= (1− θ) ex− x
1−θ

[
α e

θ x
1−θ +

θ x

1− θ e
θ x
1−θ

]
(by (12.1) and (12.2))

= (1− θ)α+ θ x.

In order to determine the conditional variance of Y given the event X = x,
we need the conditional expectation of Y 2 given the event X = x. This
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conditional expectation can be evaluated as follows:

E(Y 2/x)

=
∫ ∞

0
y2 f(y/x) dy

=
∫ ∞

0
y2 ex− x

1−θ

∞∑

k=0

1
Γ(α+ k) (1− θ)α+2k

(θ x)k

k!
yα+k−1 e−

y
1−θ dy

= ex− x
1−θ

∞∑

k=0

1
Γ(α+ k) (1− θ)α+2k

(θ x)k

k!

∫ ∞

0
yα+k+1 e−

y
1−θ dy

= ex− x
1−θ

∞∑

k=0

1
Γ(α+ k) (1− θ)α+2k

(θ x)k

k!
(1− θ)α+k+2 Γ(α+ k + 2)

= (1− θ)2 ex− x
1−θ

∞∑

k=0

(α+ k + 1) (α+ k)
1
k!

(
θ x

1− θ

)k

= (1− θ)2 ex− x
1−θ

∞∑

k=0

(α2 + 2αk + k2 + α+ k)
1
k!

(
θ x

1− θ

)k

= (1− θ)2
[
α2 + α+ (2α+ 1)

θ x

1− θ +
θ x

1− θ + ex− x
1−θ

∞∑

k=0

k2

k!

(
θ x

1− θ

)k
]

= (1− θ)2
[
α2 + α+ (2α+ 1)

θ x

1− θ +
θ x

1− θ +
(
θ x

1− θ

)2
]

= (α2 + α) (1− θ)2 + 2(α+ 1) θ (1− θ) x + θ2 x2.

The conditional variance of Y given X = x is

V ar(Y/x) = E(Y 2/x)− E(Y/x)2

= (α2 + α) (1− θ)2 + 2(α+ 1) θ (1− θ) x + θ2 x2

−
[
(1− θ)2 α2 + θ2 x2 + 2α θ (1− θ) x

]

= (1− θ) [α (1− θ) + 2 θ x] .

Since the density function f(x, y) is symmetric, that is f(x, y) = f(y, x),
the conditional expectation E(X/y) and the conditional variance V ar(X/y)
can be obtained by interchanging x with y in the formulae of E(Y/x) and
V ar(Y/x). This completes the proof of the theorem.

In 1941, Cherian constructed a bivariate gamma distribution whose prob-
ability density function is given by

f(x, y) =






e−(x+y)∏3

i=1
Γ(αi)

∫min{x,y}
0

zα3 (x−z)α1 (y−z)α2

z (x−z) (y−z) ez dz if 0 < x, y <∞

0 otherwise,
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where α1, α2, α3 ∈ (0,∞) are parameters. If a bivariate random vari-
able (X, Y ) has a Cherian bivariate gamma probability density function
with parameters α1, α2 and α3, then we denote this by writing (X, Y ) ∼
GAMC(α1, α2, α3).

It can be shown that the marginals of f(x, y) are given by

f1(x) =

{ 1
Γ(α1+α3)

xα1+α3−1 e−x if 0 < x <∞

0 otherwise

and

f2(x) =

{ 1
Γ(α2+α3)

xα2+α3−1 e−y if 0 < y < ∞

0 otherwise.
Hence, we have the following theorem.

Theorem 12.7. If (X, Y ) ∼ GAMC(α, β, γ), then

E(X) = α+ γ

E(Y ) = β + γ

V ar(X) = α+ γ

V ar(Y ) = β + γ

E(XY ) = γ + (α+ γ)(β + γ).

The following theorem can be established by first computing the con-
ditional probability density functions. We leave the proof of the following
theorem to the reader.

Theorem 12.8. If (X, Y ) ∼ GAMC(α, β, γ), then

E(Y/x) = β +
γ

α+ γ
x and E(X/y) = α+

γ

β + γ
y.

David and Fix (1961) have studied the rank correlation and regression for
samples from this distribution. For an account of this bivariate gamma dis-
tribution the interested reader should refer to Moran (1967).

In 1934, McKay gave another bivariate gamma distribution whose prob-
ability density function is of the form

f(x, y) =






θα+β

Γ(α) Γ(β) xα−1 (y − x)β−1 e−θ y if 0 < x < y <∞

0 otherwise,
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where θ, α, β ∈ (0,∞) are parameters. If the form of the joint density of
the random variable (X, Y ) is similar to the density function of the bivariate
gamma distribution of McKay, then we write (X, Y ) ∼ GAMM(θ, α, β).
The graph of probability density function f(x, y) of the bivariate gamma
distribution of McKay for θ = α = β = 2 is shown below. The other figure
illustrates the equi-density curves of this joint density function f(x, y).

It can shown that if (X, Y ) ∼ GAMM(θ, α, β), then the marginal f1(x)
of X and the marginal f2(y) of Y are given by

f1(x) =

{ θα

Γ(α) xα−1 e−θ x if 0 ≤ x <∞

0 otherwise

and

f2(y) =






θα+β

Γ(α+β) xα+β−1 e−θ x if 0 ≤ x <∞

0 otherwise.

Hence X ∼ GAM
(
α, 1

θ

)
and Y ∼ GAM

(
α+ β, 1

θ

)
. Therefore, we have the

following theorem.

Theorem 12.9. If (X, Y ) ∼ GAMM(θ, α, β), then

E(X) =
α

θ

E(Y ) =
α+ β
θ

V ar(X) =
α

θ2

V ar(Y ) =
α+ β
θ2

M(s, t) =
(

θ

θ − s− t

)α ( θ

θ − t

)β
.
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We state the various properties of the conditional densities of f(x, y),
without proof, in the following theorem.

Theorem 12.10. If (X, Y ) ∼ GAMM(θ, α, β), then

E(Y/x) = x +
β

θ

E(X/y) =
α y

α+ β

V ar(Y/x) =
β

θ2

V ar(X/y) =
αβ

(α+ β)2 (α+ β + 1)
y2.

We know that the univariate exponential distribution is a special case
of the univariate gamma distribution. Similarly, the bivariate exponential
distribution is a special case of bivariate gamma distribution. On taking the
index parameters to be unity in the Kibble and Cherian bivariate gamma
distribution given above, we obtain the corresponding bivariate exponential
distributions. The bivariate exponential probability density function corre-
sponding to bivariate gamma distribution of Kibble is given by

f(x, y) =






e−( x+y
1−θ )

∞∑

k=0

(θ x y)k

k! Γ(k + 1) (1− θ)2k+1
if 0 < x, y <∞

0 otherwise,

where θ ∈ (0, 1) is a parameter. The bivariate exponential distribution cor-
responding to the Cherian bivariate distribution is the following:

f(x, y) =

{[
emin{x,y} − 1

]
e−(x+y) if 0 < x, y <∞

0 otherwise.

In 1960, Gumble has studied the following bivariate exponential distribution
whose density function is given by

f(x, y) =






[(1 + θx) (1 + θy)− θ] e−(x+y+θ x y) if 0 < x, y <∞

0 otherwise,

where θ > 0 is a parameter.
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In 1967, Marshall and Olkin introduced the following bivariate exponen-
tial distribution

F (x, y) =






1− e−(α+γ)x − e−(β+γ)y + e−(αx+βy+γ max{x,y}) if x, y > 0

0 otherwise,

where α, β, γ > 0 are parameters. The exponential distribution function of
Marshall and Olkin satisfies the lack of memory property

P (X > x + t, Y > y + t / X > t, Y > t) = P (X > x, Y > y).

12.4. Bivariate Beta Distribution

The bivariate beta distribution (also known as Dirichlet distribution ) is
one of the basic distributions in statistics. The bivariate beta distribution
is used in geology, biology, and chemistry for handling compositional data
which are subject to nonnegativity and constant-sum constraints. It is also
used nowadays with increasing frequency in statistical modeling, distribu-
tion theory and Bayesian statistics. For example, it is used to model the
distribution of brand shares of certain consumer products, and in describing
the joint distribution of two soil strength parameters. Further, it is used in
modeling the proportions of the electorates who vote for a candidates in a
two-candidate election. In Bayesian statistics, the beta distribution is very
popular as a prior since it yields a beta distribution as posterior. In this
section, we give some basic facts about the bivariate beta distribution.

Definition 12.5. A continuous bivariate random variable (X, Y ) is said to
have the bivariate beta distribution if its joint probability density function is
of the form

f(x, y) =






Γ(θ1+θ2+θ3)
Γ(θ1)Γ(θ2)Γ(θ3)

xθ1−1yθ2−1(1− x− y)θ3−1 if 0 < x, y, x + y < 1

0 otherwise,
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where θ1, θ2, θ3 are positive parameters. We will denote a bivariate beta
random variable (X, Y ) with positive parameters θ1, θ2 and θ3 by writing
(X, Y ) ∼ Beta(θ1, θ2, θ3).

The following figures show the graph and the equi-density curves of
f(x, y) on the domain of its definition.

In the following theorem, we present the expected values, the variances
of the random variables X and Y , and the correlation between X and Y .

Theorem 12.11. Let (X, Y ) ∼ Beta(θ1, θ2, θ3), where θ1, θ2 and θ3 are
positive apriori chosen parameters. Then X ∼ Beta(θ1, θ2 + θ3) and Y ∼
Beta(θ2, θ1 + θ3) and

E(X) =
θ1
θ

, V ar(X) =
θ1 (θ − θ1)
θ2 (θ + 1)

E(Y ) =
θ2
θ

, V ar(Y ) =
θ2 (θ − θ2)
θ2 (θ + 1)

Cov(X, Y ) = − θ1 θ2
θ2 (θ + 1)

where θ = θ1 + θ2 + θ3.

Proof: First, we show that X ∼ Beta(θ1, θ2 +θ3) and Y ∼ Beta(θ2, θ1 +θ3).
Since (X, Y ) ∼ Beta(θ2, θ1, θ3), the joint density of (X, Y ) is given by

f(x, y) =
Γ(θ)

Γ(θ1)Γ(θ2)Γ(θ3)
xθ1−1yθ2−1(1− x− y)θ3−1,
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where θ = θ1 + θ2 + θ3. Thus the marginal density of X is given by

f1(x) =
∫ 1

0
f(x, y) dy

=
Γ(θ)

Γ(θ1)Γ(θ2)Γ(θ3)
xθ1−1

∫ 1−x

0
yθ2−1(1− x− y)θ3−1 dy

=
Γ(θ)

Γ(θ1)Γ(θ2)Γ(θ3)
xθ1−1(1− x)θ3−1

∫ 1−x

0
yθ2−1

(
1− y

1− x

)θ3−1

dy

Now we substitute u = 1− y
1−x in the above integral. Then we have

f1(x) =
Γ(θ)

Γ(θ1)Γ(θ2)Γ(θ3)
xθ1−1(1− x)θ2+θ3−1

∫ 1

0
uθ2−1(1− u)θ3−1 du

=
Γ(θ)

Γ(θ1)Γ(θ2)Γ(θ3)
xθ1−1(1− x)θ2+θ3−1 B(θ2, θ3)

=
Γ(θ)

Γ(θ1)Γ(θ2 + θ3)
xθ1−1(1− x)θ2+θ3−1

since ∫ 1

0
uθ2−1(1− u)θ3−1 du = B(θ2, θ3) =

Γ(θ2)Γ(θ3)
Γ(θ2 + θ3)

.

This proves that the random variable X ∼ Beta(θ1, θ2 + θ3). Similarly,
one can shows that the random variable Y ∼ Beta(θ2, θ1 + θ3). Now using
Theorem 6.5, we see that

E(X) =
θ1
θ

, V ar(X) =
θ1 (θ − θ1)
θ2 (θ + 1)

E(Y ) =
θ2
θ

, V ar(X) =
θ2 (θ − θ2)
θ2 (θ + 1)

,

where θ = θ1 + θ2 + θ3.
Next, we compute the product moment of X and Y . Consider

E(XY )

=
∫ 1

0

[∫ 1−x

0
xy f(x, y) dy

]
dx

=
Γ(θ)

Γ(θ1)Γ(θ2)Γ(θ3)

∫ 1

0

[∫ 1−x

0
xy xθ1−1yθ2−1(1− x− y)θ3−1dy

]
dx

=
Γ(θ)

Γ(θ1)Γ(θ2)Γ(θ3)

∫ 1

0

[∫ 1−x

0
xθ1yθ2(1− x− y)θ3−1dy

]
dx

=
Γ(θ)

Γ(θ1)Γ(θ2)Γ(θ3)

∫ 1

0
xθ1(1− x)θ3−1

[∫ 1−x

0
yθ2
(

1− y

1− x

)θ3−1

dy

]
dx.
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Now we substitute u = y
1−x in the above integral to obtain

E(XY ) =
Γ(θ)

Γ(θ1)Γ(θ2)Γ(θ3)

∫ 1

0
xθ1(1− x)θ2+θ3

[∫ 1

0
uθ2(1− u)θ3−1du

]
dx

Since ∫ 1

0
uθ2(1− u)θ3−1du = B(θ2 + 1, θ3)

and ∫ 1

0
xθ1(1− x)θ2+θ3dx = B(θ1 + 1, θ2 + θ3 + 1)

we have

E(XY ) =
Γ(θ)

Γ(θ1)Γ(θ2)Γ(θ3)
B(θ2 + 1, θ3) B(θ1 + 1, θ2 + θ3 + 1)

=
Γ(θ)

Γ(θ1)Γ(θ2)Γ(θ3)
θ1Γ(θ1)(θ2 + θ3)Γ(θ2 + θ3)

(θ)(θ + 1)Γ(θ)
θ2Γ(θ2)Γ(θ3)

(θ2 + θ3)Γ(θ2 + θ3)

=
θ1θ2
θ (θ + 1)

where θ = θ1 + θ2 + θ3.

Now it is easy to compute the covariance of X and Y since

Cov(X, Y ) = E(XY )− E(X)E(Y )

=
θ1θ2
θ (θ + 1)

− θ1
θ

θ2
θ

= − θ1 θ2
θ2 (θ + 1)

.

The proof of the theorem is now complete.

The correlation coefficient of X and Y can be computed using the co-
variance as

ρ =
Cov(X, Y )√

V ar(X) V ar(Y )
= −

√
θ1θ2

(θ1 + θ3)(θ2 + θ3)
.

Next theorem states some properties of the conditional density functions
f(x/y) and f(y/x).

Theorem 12.12. Let (X, Y ) ∼ Beta(θ1, θ2, θ3) where θ1, θ2 and θ3 are
positive parameters. Then

E(Y/x) =
θ2(1− x)
θ2 + θ3

, V ar(Y/x) =
θ2 θ3(1− x)2

(θ2 + θ3)2(θ2 + θ3 + 1)

E(X/y) =
θ1(1− y)
θ1 + θ3

, V ar(X/y) =
θ1 θ3(1− y)2

(θ1 + θ3)2(θ1 + θ3 + 1)
.
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Proof: We know that if (X, Y ) ∼ Beta(θ1, θ2, θ3), the random variable
X ∼ Beta(θ1, θ2 + θ3). Therefore

f(y/x) =
f(x, y)
f1(x)

=
1

1− x

Γ(θ2 + θ3)
Γ(θ2)Γ(θ3)

(
y

1− x

)θ2−1(
1− y

1− x

)θ3−1

for all 0 < y < 1− x. Thus the random variable Y
1−x

∣∣∣
X=x

is a beta random
variable with parameters θ2 and θ3.

Now we compute the conditional expectation of Y/x. Consider

E(Y/x) =
∫ 1−x

0
y f(y/x) dy

=
1

1− x

Γ(θ2 + θ3)
Γ(θ2)Γ(θ3)

∫ 1−x

0
y

(
y

1− x

)θ2−1(
1− y

1− x

)θ3−1

dy.

Now we substitute u = y
1−x in the above integral to obtain

E(Y/x) =
Γ(θ2 + θ3)
Γ(θ2)Γ(θ3)

(1− x)
∫ 1

0
uθ2(1− u)θ3−1 du

=
Γ(θ2 + θ3)
Γ(θ2)Γ(θ3)

(1− x) B(θ2 + 1, θ3)

=
Γ(θ2 + θ3)
Γ(θ2)Γ(θ3)

(1− x)
θ2 Γ(θ2)Γ(θ3)

(θ2 + θ3) Γ(θ2 + θ3)

=
θ2

θ2 + θ3
(1− x).

Next, we compute E(Y 2/x). Consider

E(Y 2/x) =
∫ 1−x

0
y2 f(y/x) dy

=
1

1− x

Γ(θ2 + θ3)
Γ(θ2)Γ(θ3)

∫ 1−x

0
y2

(
y

1− x

)θ2−1(
1− y

1− x

)θ3−1

dy

=
Γ(θ2 + θ3)
Γ(θ2)Γ(θ3)

(1− x)2
∫ 1

0
uθ2+1 (1− u)θ3−1 du

=
Γ(θ2 + θ3)
Γ(θ2)Γ(θ3)

(1− x)2 B(θ2 + 2, θ3)

=
Γ(θ2 + θ3)
Γ(θ2)Γ(θ3)

(1− x)2
(θ2 + 1) θ2 Γ(θ2)Γ(θ3)

(θ2 + θ3 + 1) (θ2 + θ3) Γ(θ2 + θ3)

=
(θ2 + 1) θ2

(θ2 + θ3 + 1) (θ2 + θ3
(1− x)2.
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Therefore

V ar(Y/x) = E(Y 2/x)− E(Y/x)2 =
θ2θ3 (1− x)2

(θ2 + θ3)2(θ2 + θ3 + 1)
.

Similarly, one can compute E(X/y) and V ar(X/y). We leave this com-
putation to the reader. Now the proof of the theorem is now complete.

The Dirichlet distribution can be extended from the unit square (0, 1)2

to an arbitrary rectangle (a1, b1)× (a2, b2).

Definition 12.6. A continuous bivariate random variable (X1, X2) is said to
have the generalized bivariate beta distribution if its joint probability density
function is of the form

f(x1, x2) =
Γ(θ1 + θ2 + θ3)
Γ(θ1)Γ(θ2)Γ(θ3)

2∏

k=1

(
xk − ak

bk − ak

)θk−1(
1− xk − ak

bk − ak

)θ3−1

where 0 < x1, x2, x1 + x2 < 1 and θ1, θ2, θ3, a1, b1, a2, b2 are parameters. We
will denote a bivariate generalized beta random variable (X, Y ) with positive
parameters θ1, θ2 and θ3 by writing (X, Y ) ∼ GBeta(θ1, θ2, θ3, a1, b1, a2, b2).

It can be shown that if Xk = (bk − ak)Yk + ak (for k = 1, 2) and each
(Y1, Y2) ∼ Beta(θ1, θ2, θ3), then (X1, X2) ∼ GBeta(θ1, θ2, θ3, a1, b1, a2, b2).
Therefore, by Theorem 12.11

Theorem 12.13. Let (X, Y ) ∼ GBeta(θ1, θ2, θ3, a1, b1, a2, b2), where θ1, θ2
and θ3 are positive apriori chosen parameters. Then X ∼ Beta(θ1, θ2 + θ3)
and Y ∼ Beta(θ2, θ1 + θ3) and

E(X) = (b1 − a1)
θ1
θ

+ a1, V ar(X) = (b1 − a1)2
θ1 (θ − θ1)
θ2 (θ + 1)

E(Y ) = (b2 − a2)
θ2
θ

+ a2, V ar(Y ) = (b2 − a2)2
θ2 (θ − θ2)
θ2 (θ + 1)

Cov(X, Y ) = −(b1 − a1)(b2 − a2)
θ1 θ2

θ2 (θ + 1)

where θ = θ1 + θ2 + θ3.

Another generalization of the bivariate beta distribution is the following:

Definition 12.7. A continuous bivariate random variable (X1, X2) is said to
have the generalized bivariate beta distribution if its joint probability density
function is of the form

f(x1, x2) =
1

B(α1, β1)B(α2, β2)
xα1−1(1− x1)β1−α2−β2 xα2−1

2 (1− x1x2)β2−1
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where 0 < x1, x2, x1 + x2 < 1 and α1, α2, β1, β2 are parameters.
It is not difficult to see that X ∼ Beta(α1, β1) and Y ∼ Beta(α2, β2).

12.5. Bivariate Normal Distribution

The bivariate normal distribution is a generalization of the univariate
normal distribution. The first statistical treatment of the bivariate normal
distribution was given by Galton and Dickson in 1886. Although there are
several other bivariate distributions as discussed above, the bivariate normal
distribution still plays a dominant role. The development of normal theory
has been intensive and most thinking has centered upon bivariate normal
distribution because of the relative simplicity of mathematical treatment of
it. In this section, we give an in depth treatment of the bivariate normal
distribution.

Definition 12.8. A continuous bivariate random variable (X, Y ) is said to
have the bivariate normal distribution if its joint probability density function
is of the form

f(x, y) =
1

2π σ1 σ2
√

1− ρ2
e−

1
2 Q(x,y), −∞ < x, y <∞,

where µ1, µ2 ∈ IR, σ1, σ2 ∈ (0,∞) and ρ ∈ (−1, 1) are parameters, and

Q(x, y) :=
1

1− ρ2

[(
x− µ1

σ1

)2

− 2 ρ
(

x− µ1

σ1

) (
y − µ2

σ2

)
+
(

y − µ2

σ2

)2
]

.

As usual, we denote this bivariate normal random variable by writing
(X, Y ) ∼ N(µ1, µ2, σ1, σ2, ρ). The graph of f(x, y) has a shape of a “moun-
tain”. The pair (µ1, µ2) tells us where the center of the mountain is located
in the (x, y)-plane, while σ2

1 and σ2
2 measure the spread of this mountain in

the x-direction and y-direction, respectively. The parameter ρ determines
the shape and orientation on the (x, y)-plane of the mountain. The following
figures show the graphs of the bivariate normal distributions with different
values of correlation coefficient ρ. The first two figures illustrate the graph of
the bivariate normal distribution with ρ = 0, µ1 = µ2 = 0, and σ1 = σ2 = 1
and the equi-density plots. The next two figures illustrate the graph of the
bivariate normal distribution with ρ = 0.5, µ1 = µ2 = 0, and σ1 = σ2 = 0.5
and the equi-density plots. The last two figures illustrate the graph of the
bivariate normal distribution with ρ = −0.5, µ1 = µ2 = 0, and σ1 = σ2 = 0.5
and the equi-density plots.
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One of the remarkable features of the bivariate normal distribution is
that if we vertically slice the graph of f(x, y) along any direction, we obtain
a univariate normal distribution. In particular, if we vertically slice the graph
of the f(x, y) along the x-axis, we obtain a univariate normal distribution.
That is the marginal of f(x, y) is again normal. One can show that the
marginals of f(x, y) are given by

f1(x) =
1

σ1
√

2π
e
− 1

2

(
x−µ1
σ1

)2

and

f2(y) =
1

σ2
√

2π
e
− 1

2

(
x−µ2
σ2

)2
.

In view of these, the following theorem is obvious.
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Theorem 12.14. If (X, Y ) ∼ N(µ1, µ2, σ1, σ2, ρ), then

E(X) = µ1

E(Y ) = µ2

V ar(X) = σ2
1

V ar(Y ) = σ2
2

Corr(X, Y ) = ρ

M(s, t) = eµ1s+µ2t+ 1
2 (σ2

1s2+2ρσ1σ2st+σ2
2t2).

Proof: It is easy to establish the formulae for E(X), E(Y ), V ar(X) and
V ar(Y ). Here we only establish the moment generating function. Since
(X, Y ) ∼ N(µ1, µ2, σ1, σ2, ρ), we have X ∼ N

(
µ1, σ2

1

)
and Y ∼ N

(
µ2, σ2

2

)
.

Further, for any s and t, the random variable W = sX + tY is again normal
with

µW = sµ1 + tµ2 and σ2
W = s2σ2

1 + 2stρσ1σ2 + t2σ2.

Since W is a normal random variable, its moment generating function is given
by

M(τ) = eµW τ+ 1
2 τ2σ2

W .

The joint moment generating function of (X, Y ) is

M(s, t) = E
(
esX+tY

)

= eµW + 1
2 σ2

W

= eµ1s+µ2t+ 1
2 (σ2

1s2+2ρσ1σ2st+σ2
2t2).

This completes the proof of the theorem.

It can be shown that the conditional density of Y given X = x is

f(y/x) =
1

σ2
√

2π (1− ρ2)
e
− 1

2

(
y−b

σ2
√

1−ρ2

)2

where
b = µ2 + ρ

σ2
σ1

(x− µ1).

Similarly, the conditional density f(x/y) is

f(x/y) =
1

σ1
√

2π (1− ρ2)
e
− 1

2

(
x−c

σ1
√

1−ρ2

)2
,
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where
c = µ1 + ρ

σ1
σ2

(y − µ2).

In view of the form of f(y/x) and f(x/y), the following theorem is transpar-
ent.

Theorem 12.15. If (X, Y ) ∼ N(µ1, µ2, σ1, σ2, ρ), then

E(Y/x) = µ2 + ρ
σ2
σ1

(x− µ1)

E(X/y) = µ1 + ρ
σ1
σ2

(y − µ2)

V ar(Y/x) = σ2
2 (1− ρ2)

V ar(X/y) = σ2
1 (1− ρ2).

We have seen that if (X, Y ) has a bivariate normal distribution, then the
distributions of X and Y are also normal. However, the converse of this is
not true. That is if X and Y have normal distributions as their marginals,
then their joint distribution is not necessarily bivariate normal.

Now we present some characterization theorems concerning the bivariate
normal distribution. The first theorem is due to Cramer (1941).

Theorem 12.16. The random variables X and Y have a joint bivariate
normal distribution if and only if every linear combination of X and Y has
a univariate normal distribution.

Theorem 12.17. The random variables X and Y with unit variances and
correlation coefficient ρ have a joint bivariate normal distribution if and only
if

∂

∂ρ
E[g(X, Y )] = E

[
∂2

∂X ∂Y
g(X, Y )

]

holds for an arbitrary function g(x, y) of two variable.

Many interesting characterizations of bivariate normal distribution can
be found in the survey paper of Hamedani (1992).

12.6. Bivariate Logistic Distributions

In this section, we study two bivariate logistic distributions. A univariate
logistic distribution is often considered as an alternative to the univariate
normal distribution. The univariate logistic distribution has a shape very
close to that of a univariate normal distribution but has heavier tails than
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the normal. This distribution is also used as an alternative to the univariate
Weibull distribution in life-testing. The univariate logistic distribution has
the following probability density function

f(x) =
π

σ
√

3
e−

π√
3 ( x−µ

σ )
[
1 + e−

π√
3 ( x−µ

σ )
]2 −∞ < x <∞,

where −∞ < µ < ∞ and σ > 0 are parameters. The parameter µ is the
mean and the parameter σ is the standard deviation of the distribution. A
random variable X with the above logistic distribution will be denoted by
X ∼ LOG(µ, σ). It is well known that the moment generating function of
univariate logistic distribution is given by

M(t) = eµt Γ

(
1 +

√
3
π
σt

)
Γ

(
1−

√
3
π
σt

)

for |t| < π
σ
√

3
. We give brief proof of the above result for µ = 0 and σ = π√

3
.

Then with these assumptions, the logistic density function reduces to

f(x) =
e−x

(1 + e−x)2
.

The moment generating function with respect to this density function is

M(t) =
∫ ∞

−∞
etx f(x) dx

=
∫ ∞

−∞
etx e−x

(1 + e−1)2
dx

=
∫ ∞

−∞

(
e−x
)−t e−x

(1 + e−1)2
dx

=
∫ 1

0

(
z−1 − 1

)−t
dz where z =

1
1 + e−x

=
∫ 1

0
zt (1− z)−t dz

= B(1 + t, 1− t)

=
Γ(1 + t) Γ(1− t)
Γ(1 + t + 1− t)

=
Γ(1 + t) Γ(1− t)

Γ(2)
= Γ(1 + t) Γ(1− t)

= t cosec(t).
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Recall that the marginals and conditionals of the bivariate normal dis-
tribution are univariate normal. This beautiful property enjoyed by the bi-
variate normal distribution are apparently lacking from other bivariate dis-
tributions we have discussed so far. If we can not define a bivariate logistic
distribution so that the conditionals and marginals are univariate logistic,
then we would like to have at least one of the marginal distributions logistic
and the conditional distribution of the other variable logistic. The following
bivariate logistic distribution is due to Gumble (1961).

Definition 12.9. A continuous bivariate random variable (X, Y ) is said to
have the bivariate logistic distribution of first kind if its joint probability
density function is of the form

f(x, y) =
2π2 e

− π√
3

(
x−µ1
σ1

+
y−µ2
σ2

)

3σ1 σ2
[
1 + e

− π√
3

(
x−µ1
σ1

)
+ e

− π√
3

(
y−µ2
σ2

)]3 −∞ < x, y <∞,

where −∞ < µ1, µ2 < ∞, and 0 < σ1, σ2 < ∞ are parameters. If a random
variable (X, Y ) has a bivariate logistic distribution of first kind, then we
express this by writing (X, Y ) ∼ LOGF (µ1, µ2, σ1, σ2). The following figures
show the graph of f(x, y) with µ1 = 0 = µ2 and σ1 = 1 = σ2 and the equi-
density plots.

It can be shown that marginally, X is a logistic random variable. That
is, X ∼ LOG (µ1, σ1). Similarly, Y ∼ LOG (µ2, σ2). These facts lead us to
the following theorem.

Theorem 12.18. If the random variable (X, Y ) ∼ LOGF (µ1, µ2, σ1, σ2),
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then
E(X) = µ1

E(Y ) = µ2

V ar(X) = σ2
1

V ar(Y ) = σ2
2

E(XY ) =
1
2
σ1 σ2 + µ1 µ2,

and the moment generating function is given by

M(s, t) = eµ1s+µ2tΓ

(
1 +

(σ1s + σ2t)
√

3
π

)
Γ

(
1− σ1s

√
3

π

)
Γ

(
1− σ2t

√
3

π

)

for |s| < π
σ1

√
3

and |t| < π
σ2

√
3
.

It is an easy exercise to see that if the random variables X and Y have
a joint bivariate logistic distribution, then the correlation between X and Y

is 1
2 . This can be considered as one of the drawbacks of this distribution in

the sense that it limits the dependence between the random variables X and
Y .

The conditional density of Y given X = x is

f(y/x) =
2π
σ2
√

3
e
− π√

3

(
y−µ2
σ2

)
[
1 + e

− π√
3

(
x−µ1
σ1

)]2

[
1 + e

− π√
3

(
x−µ1
σ1

)
+ e

− π√
3

(
y−µ2
σ2

)]3 .

Similarly the conditional density of X given Y = y is

f(x/y) =
2π
σ1
√

3
e
− π√

3

(
x−µ1
σ1

)
[
1 + e

− π√
3

(
y−µ2
σ2

)]2

[
1 + e

− π√
3

(
x−µ1
σ1

)
+ e

− π√
3

(
y−µ2
σ2

)]3 .

Using these densities, the next theorem offers various conditional properties
of the bivariate logistic distribution.

Theorem 12.19. If the random variable (X, Y ) ∼ LOGF (µ1, µ2, σ1, σ2),
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then
E(Y/x) = 1− ln

(
1 + e

− π√
3

(
x−µ1
σ1

))

E(X/y) = 1− ln
(

1 + e
− π√

3

(
y−µ2
σ2

))

V ar(Y/x) =
π3

3
− 1

V ar(X/y) =
π3

3
− 1.

It was pointed out earlier that one of the drawbacks of this bivariate
logistic distribution of first kind is that it limits the dependence of the ran-
dom variables. The following bivariate logistic distribution was suggested to
rectify this drawback.

Definition 12.10. A continuous bivariate random variable (X, Y ) is said to
have the bivariate logistic distribution of second kind if its joint probability
density function is of the form

f(x, y) =
[φα(x, y)]1−2α

[1 + φα(x, y)]2

(
φα(x, y)− 1
φα(x, y) + 1

+ α
)

e−α(x+y), −∞ < x, y <∞,

where α > 0 is a parameter, and φα(x, y) := (e−αx + e−αy)
1
α . As before, we

denote a bivariate logistic random variable of second kind (X, Y ) by writing
(X, Y ) ∼ LOGS(α).

The marginal densities of X and Y are again logistic and they given by

f1(x) =
e−x

(1 + e−x)2
, −∞ < x <∞

and
f2(y) =

e−y

(1 + e−y)2
, −∞ < y < ∞.

It was shown by Oliveira (1961) that if (X, Y ) ∼ LOGS(α), then the corre-
lation between X and Y is

ρ(X, Y ) = 1− 1
2α2

.
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12.7. Review Exercises

1. If (X, Y ) ∼ N(µ1, µ2, σ1, σ2, ρ) with Q(x, y) = x2+2y2−2xy+2x−2y+1,
then what is the value of the conditional variance of Y given the event X = x?

2. If (X, Y ) ∼ N(µ1, µ2, σ1, σ2, ρ) with

Q(x, y) = − 1
102
[
(x + 3)2 − 16(x + 3)(y − 2) + 4(y − 2)2

]
,

then what is the value of the conditional expectation of Y given X = x?

3. If (X, Y ) ∼ N(µ1, µ2, σ1, σ2, ρ), then what is the correlation coefficient of
the random variables U and V , where U = 2X + 3Y and V = 2X − 3Y ?

4. Let the random variables X and Y denote the height and weight of
wild turkeys. If the random variables X and Y have a bivariate normal
distribution with µ1 = 18 inches, µ2 = 15 pounds, σ1 = 3 inches, σ2 = 2
pounds, and ρ = 0.75, then what is the expected weight of one of these wild
turkeys that is 17 inches tall?

5. If (X, Y ) ∼ N(µ1, µ2, σ1, σ2, ρ), then what is the moment generating
function of the random variables U and V , where U = 7X + 3Y and V =
7X − 3Y ?

6. Let (X, Y ) have a bivariate normal distribution. The mean of X is 10 and
the variance of X is 12. The mean of Y is −5 and the variance of Y is 5. If
the covariance of X and Y is 4, then what is the probability that X + Y is
greater than 10?

7. Let X and Y have a bivariate normal distribution with means µX = 5
and µY = 6, standard deviations σX = 3 and σY = 2, and covariance
σXY = 2. Let Φ denote the cumulative distribution function of a normal
random variable with mean 0 and variance 1. What is P (2 ≤ X − Y ≤ 5) in
terms of Φ ?

8. If (X, Y ) ∼ N(µ1, µ2, σ1, σ2, ρ) with Q(x, y) = −x2 + xy− 2y2, then what
is the conditional distributions of X given the event Y = y?

9. If (X, Y ) ∼ GAMK(α, θ), where 0 < α < ∞ and 0 ≤ θ < 1 are parame-
ters, then show that the moment generating function is given by

M(s, t) =
(

1
(1− s) (1− t)− θ s t

)α
.
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10. Let X and Y have a bivariate gamma distribution of Kibble with pa-
rameters α = 1 and 0 ≤ θ < 0. What is the probability that the random
variable 7X is less than 1

2?

11. If (X, Y ) ∼ GAMC(α, β, γ), then what are the regression and scedestic
curves of Y on X?

12. The position of a random point (X, Y ) is equally probable anywhere on
a circle of radius R and whose center is at the origin. What is the probability
density function of each of the random variables X and Y ? Are the random
variables X and Y independent?

13. If (X, Y ) ∼ GAMC(α, β, γ), what is the correlation coefficient of the
random variables X and Y ?

14. Let X and Y have a bivariate exponential distribution of Gumble with
parameter θ > 0. What is the regression curve of Y on X?

15. A screen of a navigational radar station represents a circle of radius 12
inches. As a result of noise, a spot may appear with its center at any point
of the circle. Find the expected value and variance of the distance between
the center of the spot and the center of the circle.

16. Let X and Y have a bivariate normal distribution. Which of the following
statements must be true?

(I) Any nonzero linear combination of X and Y has a normal distribution.
(II) E(Y/X = x) is a linear function of x.
(III) V ar(Y/X = x) ≤ V ar(Y ).

17. If (X, Y ) ∼ LOGS(α), then what is the correlation between X and Y ?

18. If (X, Y ) ∼ LOGF (µ1, µ2, σ1, σ2), then what is the correlation between
the random variables X and Y ?

19. If (X, Y ) ∼ LOGF (µ1, µ2, σ1, σ2), then show that marginally X and Y

are univariate logistic.

20. If (X, Y ) ∼ LOGF (µ1, µ2, σ1, σ2), then what is the scedastic curve of
the random variable Y and X?
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Chapter 13

SEQUENCES
OF

RANDOM VARIABLES
AND

ORDER STASTISTICS

In this chapter, we generalize some of the results we have studied in the
previous chapters. We do these generalizations because the generalizations
are needed in the subsequent chapters relating mathematical statistics. In
this chapter, we also examine the weak law of large numbers, Bernoulli’s law
of large numbers, the strong law of large numbers, and the central limit the-
orem. Further, in this chapter, we treat the order statistics and percentiles.

13.1. Distribution of sample mean and variance

Consider a random experiment. Let X be the random variable associ-
ated with this experiment. Let f(x) be the probability density function of X.
Let us repeat this experiment n times. Let Xk be the random variable asso-
ciated with the kth repetition. Then the collection of the random variables
{X1, X2, ..., Xn } is a random sample of size n. From here after, we simply
denote X1, X2, ..., Xn as a random sample of size n. The random variables
X1, X2, ..., Xn are independent and identically distributed with the common
probability density function f(x).

For a random sample, functions such as the sample mean X, the sample
variance S2 are called statistics. In a particular sample, say x1, x2, ..., xn, we
observed x and s2. We may consider

X =
1
n

n∑

i=1

Xi
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and

S2 =
1

n− 1

n∑

i=1

(
Xi −X

)2

as random variables and x and s2 are the realizations from a particular
sample.

In this section, we are mainly interested in finding the probability distri-
butions of the sample mean X and sample variance S2, that is the distribution
of the statistics of samples.

Example 13.1. Let X1 and X2 be a random sample of size 2 from a distri-
bution with probability density function

f(x) =
{ 6x(1− x) if 0 < x < 1

0 otherwise.

What are the mean and variance of sample sum Y = X1 + X2?

Answer: The population mean

µX = E (X)

=
∫ 1

0
x 6x(1− x) dx

= 6
∫ 1

0
x2 (1− x) dx

= 6 B(3, 2) (here B denotes the beta function)

= 6
Γ(3) Γ(2)
Γ(5)

= 6
(

1
12

)

=
1
2
.

Since X1 and X2 have the same distribution, we obtain µX1 = 1
2 = µX2 .

Hence the mean of Y is given by

E(Y ) = E(X1 + X2)

= E(X1) + E(X2)

=
1
2

+
1
2

= 1.
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Next, we compute the variance of the population X. The variance of X is
given by

V ar(X) = E
(
X2
)
− E(X)2

=
∫ 1

0
6x3(1− x) dx−

(
1
2

)2

= 6
∫ 1

0
x3 (1− x) dx−

(
1
4

)

= 6 B(4, 2)−
(

1
4

)

= 6
Γ(4) Γ(2)
Γ(6)

−
(

1
4

)

= 6
(

1
20

)
−
(

1
4

)

=
6
20
− 5

20

=
1
20

.

Since X1 and X2 have the same distribution as the population X, we get

V ar(X1) =
1
20

= V ar(X2).

Hence, the variance of the sample sum Y is given by

V ar(Y ) = V ar (X1 + X2)

= V ar (X1) + V ar (X2) + 2 Cov (X1, X2)

= V ar (X1) + V ar (X2)

=
1
20

+
1
20

=
1
10

.

Example 13.2. Let X1 and X2 be a random sample of size 2 from a distri-
bution with density

f(x) =

{ 1
4 for x = 1, 2, 3, 4

0 otherwise.

What is the distribution of the sample sum Y = X1 + X2 ?
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Answer: Since the range space of X1 as well as X2 is {1, 2, 3, 4}, the range
space of Y = X1 + X2 is

RY = {2, 3, 4, 5, 6, 7, 8}.

Let g(y) be the density function of Y . We want to find this density function.
First, we find g(2), g(3) and so on.

g(2) = P (Y = 2)

= P (X1 + X2 = 2)

= P (X1 = 1 and X2 = 1)

= P (X1 = 1) P (X2 = 1) (by independence of X1 and X2)

= f(1) f(1)

=
(

1
4

) (
1
4

)
=

1
16

.

g(3) = P (Y = 3)

= P (X1 + X2 = 3)

= P (X1 = 1 and X2 = 2) + P (X1 = 2 and X2 = 1)

= P (X1 = 1) P (X2 = 2)

+ P (X1 = 2) P (X2 = 1) (by independence of X1 and X2)

= f(1) f(2) + f(2) f(1)

=
(

1
4

) (
1
4

)
+
(

1
4

) (
1
4

)
=

2
16

.
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g(4) = P (Y = 4)

= P (X1 + X2 = 4)

= P (X1 = 1 and X2 = 3) + P (X1 = 3 and X2 = 1)

+ P (X1 = 2 and X2 = 2)

= P (X1 = 3) P (X2 = 1) + P (X1 = 1) P (X2 = 3)

+ P (X1 = 2) P (X2 = 2) (by independence of X1 and X2)

= f(1) f(3) + f(3) f(1) + f(2) f(2)

=
(

1
4

) (
1
4

)
+
(

1
4

) (
1
4

)
+
(

1
4

) (
1
4

)

=
3
16

.

Similarly, we get

g(5) =
4
16

, g(6) =
3
16

, g(7) =
2
16

, g(8) =
1
16

.

Thus, putting these into one expression, we get

g(y) = P (Y = y)

=
y−1∑

k=1

f(k) f(y − k)

=
4− |y − 5|

16
, y = 2, 3, 4, ..., 8.

Remark 13.1. Note that g(y) =
y−1∑

k=1

f(k) f(y−k) is the discrete convolution

of f with itself. The concept of convolution was introduced in chapter 10.

The above example can also be done using the moment generating func-
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tion method as follows:

MY (t) = MX1+X2(t)

= MX1(t) MX2(t)

=
(

et + e2t + e3t + e4t

4

) (
et + e2t + e3t + e4t

4

)

=
(

et + e2t + e3t + e4t

4

)2

=
e2t + 2e3t + 3e4t + 4e5t + 3e6t + 2e7t + e8t

16
.

Hence, the density of Y is given by

g(y) =
4− |y − 5|

16
, y = 2, 3, 4, ..., 8.

Theorem 13.1. If X1, X2, ..., Xn are mutually independent random vari-
ables with densities f1(x1), f2(x2), ..., fn(xn) and E[ui(Xi)], i = 1, 2, ..., n

exist, then

E

[
n∏

i=1

ui(Xi)

]
=

n∏

i=1

E[ui(Xi)],

where ui (i = 1, 2, ..., n) are arbitrary functions.

Proof: We prove the theorem assuming that the random variables
X1, X2, ..., Xn are continuous. If the random variables are not continuous,
then the proof follows exactly in the same manner if one replaces the integrals
by summations. Since

E

(
n∏

i=1

ui(Xi)

)

= E(u1(X1) · · ·un(Xn))

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
u1(x1) · · ·un(xn)f(x1, ..., xn)dx1 · · · dxn

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
u1(x1) · · ·un(xn)f1(x1) · · · fn(xn)dx1 · · · dxn

=
∫ ∞

−∞
u1(x1)f1(x1)dx1 · · ·

∫ ∞

−∞
un(xn)fn(xn)dxn

= E (u1(X1)) · · ·E (un(Xn))

=
n∏

i=1

E (ui(Xi)) ,
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the proof of the theorem is now complete.

Example 13.3. Let X and Y be two random variables with the joint density

f(x, y) =

{
e−(x+y) for 0 < x, y <∞

0 otherwise.

What is the expected value of the continuous random variable Z = X2Y 2 +
XY 2 + X2 + X?

Answer: Since
f(x, y) = e−(x+y)

= e−x e−y

= f1(x) f2(y),

the random variables X and Y are mutually independent. Hence, the ex-
pected value of X is

E(X) =
∫ ∞

0
x f1(x) dx

=
∫ ∞

0
xe−x dx

= Γ(2)

= 1.

Similarly, the expected value of X2 is given by

E
(
X2
)

=
∫ ∞

0
x2 f1(x) dx

=
∫ ∞

0
x2e−x dx

= Γ(3)

= 2.

Since the marginals of X and Y are same, we also get E(Y ) = 1 and E(Y 2) =
2. Further, by Theorem 13.1, we get

E [Z] = E
[
X2Y 2 + XY 2 + X2 + X

]

= E
[(

X2 + X
) (

Y 2 + 1
)]

= E
[
X2 + X

]
E
[
Y 2 + 1

]
(by Theorem 13.1)

=
(
E
[
X2
]
+ E [X]

) (
E
[
Y 2
]
+ 1
)

= (2 + 1) (2 + 1)

= 9.
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Theorem 13.2. If X1, X2, ..., Xn are mutually independent random vari-
ables with respective means µ1, µ2, ..., µn and variances σ2

1 , σ2
2 , ..., σ2

n, then
the mean and variance of Y =

∑n
i=1 ai Xi, where a1, a2, ..., an are real con-

stants, are given by

µY =
n∑

i=1

ai µi and σ2
Y =

n∑

i=1

a2
i σ

2
i .

Proof: First we show that µY =
∑n

i=1 ai µi. Since

µY = E(Y )

= E

(
n∑

i=1

ai Xi

)

=
n∑

i=1

aiE(Xi)

=
n∑

i=1

aiµi

we have asserted result. Next we show σ2
Y =

∑n
i=1 a2

i σ
2
i . Since

Cov(Xi, Xj) = 0 for i += j, we have

σ2
Y = V ar(Y )

= V ar (ai Xi)

=
n∑

i=1

a2
i V ar (Xi)

=
n∑

i=1

a2
i σ

2
i .

This completes the proof of the theorem.

Example 13.4. Let the independent random variables X1 and X2 have
means µ1 = −4 and µ2 = 3, respectively and variances σ2

1 = 4 and σ2
2 = 9.

What are the mean and variance of Y = 3X1 − 2X2?

Answer: The mean of Y is

µY = 3µ1 − 2µ2

= 3(−4)− 2(3)

= −18.
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Similarly, the variance of Y is
σ2

Y = (3)2 σ2
1 + (−2)2 σ2

2

= 9σ2
1 + 4σ2

2

= 9(4) + 4(9)

= 72.

Example 13.5. Let X1, X2, ..., X50 be a random sample of size 50 from a
distribution with density

f(x) =

{ 1
θ e−

x
θ for 0 ≤ x <∞

0 otherwise.
What are the mean and variance of the sample mean X?

Answer: Since the distribution of the population X is exponential, the mean
and variance of X are given by

µX = θ, and σ2
X = θ2.

Thus, the mean of the sample mean is

E
(
X
)

= E

(
X1 + X2 + · · · + X50

50

)

=
1
50

50∑

i=1

E (Xi)

=
1
50

50∑

i=1

θ

=
1
50

50 θ = θ.

The variance of the sample mean is given by

V ar
(
X
)

= V ar

(
50∑

i=1

1
50

Xi

)

=
50∑

i=1

(
1
50

)2

σ2
Xi

=
50∑

i=1

(
1
50

)2

θ2

= 50
(

1
50

)2

θ2

=
θ2

50
.
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Theorem 13.3. If X1, X2, ..., Xn are independent random variables with
respective moment generating functions MXi(t), i = 1, 2, ..., n, then the mo-
ment generating function of Y =

∑n
i=1 aiXi is given by

MY (t) =
n∏

i=1

MXi (ait) .

Proof: Since
MY (t) = M∑n

i=1
aiXi

(t)

=
n∏

i=1

MaiXi(t)

=
n∏

i=1

MXi(ait)

we have the asserted result and the proof of the theorem is now complete.

Example 13.6. Let X1, X2, ..., X10 be the observations from a random
sample of size 10 from a distribution with density

f(x) =
1√
2π

e−
1
2 x2

, −∞ < x <∞.

What is the moment generating function of the sample mean?

Answer: The density of the population X is a standard normal. Hence, the
moment generating function of each Xi is

MXi(t) = e
1
2 t2 , i = 1, 2, ..., 10.

The moment generating function of the sample mean is

MX(t) = M∑10

i=1
1
10 Xi

(t)

=
10∏

i=1

MXi

(
1
10

t

)

=
10∏

i=1

e
t2
200

=
[
e

t2
200

]10
= e
(

1
10

t2
2

)
.

Hence X ∼ N
(
0, 1

10

)
.
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The last example tells us that if we take a sample of any size from
a standard normal population, then the sample mean also has a normal
distribution.

The following theorem says that a linear combination of random variables
with normal distributions is again normal.

Theorem 13.4. If X1, X2, ..., Xn are mutually independent random vari-
ables such that

Xi ∼ N
(
µi, σ

2
i

)
, i = 1, 2, ..., n.

Then the random variable Y =
n∑

i=1

aiXi is a normal random variable with

mean

µY =
n∑

i=1

ai µi and σ2
Y =

n∑

i=1

a2
i σ

2
i ,

that is Y ∼ N
(∑n

i=1 aiµi,
∑n

i=1 a2
iσ

2
i

)
.

Proof: Since each Xi ∼ N
(
µi, σ2

i

)
, the moment generating function of each

Xi is given by

MXi(t) = eµit+ 1
2σ

2
i t2 .

Hence using Theorem 13.3, we have

MY (t) =
n∏

i=1

MXi(ait)

=
n∏

i=1

eaiµit+ 1
2 a2

iσ
2
i t2

= e
∑n

i=1
aiµit+ 1

2

∑n

i=1
a2

iσ
2
i t2 .

Thus the random variable Y ∼ N

(
n∑

i=1

aiµi,
n∑

i=1

a2
iσ

2
i

)
. The proof of the

theorem is now complete.

Example 13.7. Let X1, X2, ..., Xn be the observations from a random sam-
ple of size n from a normal distribution with mean µ and variance σ2 > 0.
What are the mean and variance of the sample mean X?
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Answer: The expected value (or mean) of the sample mean is given by

E
(
X
)

=
1
n

n∑

i=1

E (Xi)

=
1
n

n∑

i=1

µ

= µ.

Similarly, the variance of the sample mean is

V ar
(
X
)

=
n∑

i=1

V ar

(
Xi

n

)
=

n∑

i=1

(
1
n

)2

σ2 =
σ2

n
.

This example along with the previous theorem says that if we take a random
sample of size n from a normal population with mean µ and variance σ2,
then the sample mean is also normal with mean µ and variance σ2

n , that is
X ∼ N

(
µ, σ2

n

)
.

Example 13.8. Let X1, X2, ..., X64 be a random sample of size 64 from a
normal distribution with µ = 50 and σ2 = 16. What are P (49 < X8 < 51)
and P

(
49 < X < 51

)
?

Answer: Since X8 ∼ N(50, 16), we get

P (49 < X8 < 51) = P (49− 50 < X8 − 50 < 51− 50)

= P

(
49− 50

4
<

X8 − 50
4

<
51− 50

4

)

= P

(
−1

4
<

X8 − 50
4

<
1
4

)

= P

(
−1

4
< Z <

1
4

)

= 2P

(
Z <

1
4

)
− 1

= 0.1974 (from normal table).
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By the previous theorem, we see that X ∼ N
(
50, 16

64

)
. Hence

P
(
49 < X < 51

)
= P
(
49− 50 < X − 50 < 51− 50

)

= P



49− 50√
16
64

<
X − 50√

16
64

<
51− 50√

16
64





= P



−2 <
X − 50√

16
64

< 2





= P (−2 < Z < 2)

= 2P (Z < 2)− 1

= 0.9544 (from normal table).

This example tells us that X has a greater probability of falling in an interval
containing µ, than a single observation, say X8 (or in general any Xi).

Theorem 13.5. Let the distributions of the random variables X1, X2, ..., Xn

be χ2(r1), χ2(r2), ..., χ2(rn), respectively. If X1, X2, ..., Xn are mutually in-
dependent, then Y = X1 + X2 + · · · + Xn ∼ χ2 (

∑n
i=1 ri).

Proof: Since each Xi ∼ χ2(ri), the moment generating function of each Xi

is given by
MXi(t) = (1− 2t)−

ri
2 .

By Theorem 13.3, we have

MY (t) =
n∏

i=1

MXi(t) =
n∏

i=1

(1− 2t)−
ri
2 = (1− 2t)−

1
2

∑n

i=1
ri .

Hence Y ∼ χ2 (
∑n

i=1 ri) and the proof of the theorem is now complete.

The proof of the following theorem is an easy consequence of Theorem
13.5 and we leave the proof to the reader.

Theorem 13.6. If Z1, Z2, ..., Zn are mutually independent and each one
is standard normal, then Z2

1 + Z2
2 + · · · + Z2

n ∼ χ2(n), that is the sum is
chi-square with n degrees of freedom.

The following theorem is very useful in mathematical statistics and its
proof is beyond the scope of this introductory book.

Theorem 13.7. If X1, X2, ..., Xn are observations of a random sample of
size n from the normal distribution N

(
µ, σ2
)
, then the sample mean X =
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1
n

∑n
i=1 Xi and the sample variance S2 = 1

n−1

∑n
i=1(Xi − X)2 have the

following properties:
(A) X and S2 are independent, and
(B) (n− 1) S2

σ2 ∼ χ2(n− 1).

Remark 13.2. At first sight the statement (A) might seem odd since the
sample mean X occurs explicitly in the definition of the sample variance
S2. This remarkable independence of X and S2 is a unique property that
distinguishes normal distribution from all other probability distributions.

Example 13.9. Let X1, X2, ..., Xn denote a random sample from a normal
distribution with variance σ2 > 0. If the first percentile of the statistics
W =
∑n

i=1
(Xi−X)2

σ2 is 1.24, where X denotes the sample mean, what is the
sample size n?

Answer:
1

100
= P (W ≤ 1.24)

= P

(
n∑

i=1

(Xi −X)2

σ2
≤ 1.24

)

= P

(
(n− 1)

S2

σ2
≤ 1.24
)

= P
(
χ2(n− 1) ≤ 1.24

)
.

Thus from χ2-table, we get
n− 1 = 7

and hence the sample size n is 8.

Example 13.10. Let X1, X2, ..., X4 be a random sample from a nor-
mal distribution with unknown mean and variance equal to 9. Let S2 =
1
3

∑4
i=1

(
Xi −X

)
. If P
(
S2 ≤ k

)
= 0.05, then what is k?

Answer:
0.05 = P

(
S2 ≤ k

)

= P

(
3S2

9
≤ 3

9
k

)

= P

(
χ2(3) ≤ 3

9
k

)
.

From χ2-table with 3 degrees of freedom, we get

3
9

k = 0.35
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and thus the constant k is given by

k = 3(0.35) = 1.05.

13.2. Laws of Large Numbers

In this section, we mainly examine the weak law of large numbers. The
weak law of large numbers states that if X1, X2, ..., Xn is a random sample
of size n from a population X with mean µ, then the sample mean X rarely
deviates from the population mean µ when the sample size n is very large. In
other words, the sample mean X converges in probability to the population
mean µ. We begin this section with a result known as Markov inequality
which is needed to establish the weak law of large numbers.

Theorem 13.8 (Markov Inequality). Suppose X is a nonnegative random
variable with mean E(X). Then

P (X ≥ t) ≤ E(X)
t

for all t > 0.

Proof: We assume the random variable X is continuous. If X is not con-
tinuous, then a proof can be obtained for this case by replacing the integrals
with summations in the following proof. Since

E(X) =
∫ ∞

−∞
xf(x)dx

=
∫ t

−∞
xf(x)dx +

∫ ∞

t
xf(x)dx

≥
∫ ∞

t
xf(x)dx

≥
∫ ∞

t
tf(x)dx because x ∈ [t,∞)

= t

∫ ∞

t
f(x)dx

= t P (X ≥ t),

we see that
P (X ≥ t) ≤ E(X)

t
.

This completes the proof of the theorem.
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In Theorem 4.4 of the chapter 4, Chebychev inequality was treated. Let
X be a random variable with mean µ and standard deviation σ. Then Cheby-
chev inequality says that

P (|X − µ| < kσ) ≥ 1− 1
k2

for any nonzero positive constant k. This result can be obtained easily using
Theorem 13.8 as follows. By Markov inequality, we have

P ((X − µ)2 ≥ t2) ≤ E((X − µ)2)
t2

for all t > 0. Since the events (X − µ)2 ≥ t2 and |X − µ| ≥ t are same, we
get

P ((X − µ)2 ≥ t2) = P (|X − µ| ≥ t) ≤ E((X − µ)2)
t2

for all t > 0. Hence

P (|X − µ| ≥ t) ≤ σ
2

t2
.

Letting t = kσ in the above equality, we see that

P (|X − µ| ≥ kσ) ≤ 1
k2

.

Hence
1− P (|X − µ| < kσ) ≤ 1

k2
.

The last inequality yields the Chebychev inequality

P (|X − µ| < kσ) ≥ 1− 1
k2

.

Now we are ready to treat the weak law of large numbers.

Theorem 13.9. Let X1, X2, ... be a sequence of independent and identically
distributed random variables with µ = E(Xi) and σ2 = V ar(Xi) < ∞ for
i = 1, 2, ...,∞. Then

lim
n→∞

P (|Sn − µ| ≥ ε) = 0

for every ε. Here Sn denotes X1+X2+···+Xn
n .

Proof: By Theorem 13.2 (or Example 13.7) we have

E(Sn) = µ and V ar(Sn) =
σ2

n
.
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By Chebychev’s inequality

P (|Sn − E(Sn)| ≥ ε) ≤ V ar(Sn)
ε2

for ε > 0. Hence

P (|Sn − µ| ≥ ε) ≤ σ2

n ε2
.

Taking the limit as n tends to infinity, we get

lim
n→∞

P (|Sn − µ| ≥ ε) ≤ lim
n→∞

σ2

n ε2

which yields
lim

n→∞
P (|Sn − µ| ≥ ε) = 0

and the proof of the theorem is now complete.

It is possible to prove the weak law of large numbers assuming only E(X)
to exist and finite but the proof is more involved.

The weak law of large numbers says that the sequence of sample means{
Sn

}∞
n=1

from a population X stays close to the population mean E(X) most
of the time. Let us consider an experiment that consists of tossing a coin
infinitely many times. Let Xi be 1 if the ith toss results in a Head, and 0
otherwise. The weak law of large numbers says that

Sn =
X1 + X2 + · · · + Xn

n
→ 1

2
as n →∞ (13.0)

but it is easy to come up with sequences of tosses for which (13.0) is false:

H H H H H H H H H H H H · · · · · ·
H H T H H T H H T H H T · · · · · ·

The strong law of large numbers (Theorem 13.11) states that the set of “bad
sequences” like the ones given above has probability zero.

Note that the assertion of Theorem 13.9 for any ε > 0 can also be written
as

lim
n→∞

P (|Sn − µ| < ε) = 1.

The type of convergence we saw in the weak law of large numbers is not
the type of convergence discussed in calculus. This type of convergence is
called convergence in probability and defined as follows.
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Definition 13.1. Suppose X1, X2, ... is a sequence of random variables de-
fined on a sample space S. The sequence converges in probability to the
random variable X if, for any ε > 0,

lim
n→∞

P (|Xn −X| < ε) = 1.

In view of the above definition, the weak law of large numbers states that
the sample mean X converges in probability to the population mean µ.

The following theorem is known as the Bernoulli law of large numbers
and is a special case of the weak law of large numbers.

Theorem 13.10. Let X1, X2, ... be a sequence of independent and identically
distributed Bernoulli random variables with probability of success p. Then,
for any ε > 0,

lim
n→∞

P (|Sn − p| < ε) = 1

where Sn denotes X1+X2+···+Xn
n .

The fact that the relative frequency of occurrence of an event E is very
likely to be close to its probability P (E) for large n can be derived from
the weak law of large numbers. Consider a repeatable random experiment
repeated large number of time independently. Let Xi = 1 if E occurs on the
ith repetition and Xi = 0 if E does not occur on ith repetition. Then

µ = E(Xi) = 1 · P (E) + 0 · P (E) = P (E) for i = 1, 2, 3, ...

and
X1 + X2 + · · · + Xn = N(E)

where N(E) denotes the number of times E occurs. Hence by the weak law
of large numbers, we have

lim
n→∞

P

(∣∣∣∣
N(E)

n
− P (E)

∣∣∣∣ ≥ ε
)

= lim
n→∞

P

(∣∣∣∣
X1 + X2 + · · · + Xn

n
− µ

∣∣∣∣ ≥ ε
)

= lim
n→∞

P
(∣∣Sn − µ

∣∣ ≥ ε
)

= 0.

Hence, for large n, the relative frequency of occurrence of the event E is very
likely to be close to its probability P (E).

Now we present the strong law of large numbers without a proof.
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Theorem 13.11. Let X1, X2, ... be a sequence of independent and identically
distributed random variables with µ = E(Xi) and σ2 = V ar(Xi) < ∞ for
i = 1, 2, ...,∞. Then

P
(

lim
n→∞

Sn = µ
)

= 1

for every ε > 0. Here Sn denotes X1+X2+···+Xn
n .

The type convergence in Theorem 13.11 is called almost sure convergence.
The notion of almost sure convergence is defined as follows.

Definition 13.2 Suppose the random variable X and the sequence
X1, X2, ..., of random variables are defined on a sample space S. The se-
quence Xn(w) converges almost surely to X(w) if

P
({

w ∈ S
∣∣ lim

n→∞
Xn(w) = X(w)

})
= 1.

It can be shown that the convergence in probability implies the almost
sure convergence but not the converse.

13.3. The Central Limit Theorem

Consider a random sample of measurement {Xi}n
i=1. The Xi’s are iden-

tically distributed and their common distribution is the distribution of the
population. We have seen that if the population distribution is normal, then
the sample mean X is also normal. More precisely, if X1, X2, ..., Xn is a
random sample from a normal distribution with density

f(x) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )2

then
X ∼ N

(
µ,
σ2

n

)
.

The central limit theorem (also known as Lindeberg-Levy Theorem) states
that even though the population distribution may be far from being normal,
still for large sample size n, the distribution of the standardized sample mean
is approximately standard normal with better approximations obtained with
the larger sample size. Mathematically this can be stated as follows.

Theorem 13.12 (Central Limit Theorem). Let X1, X2, ..., Xn be a ran-
dom sample of size n from a distribution with mean µ and variance σ2 <∞,
then the limiting distribution of

Zn =
X − µ

σ√
n



Sequences of Random Variables and Order Statistics 370

is standard normal, that is Zn converges in distribution to Z where Z denotes
a standard normal random variable.

The type of convergence used in the central limit theorem is called the
convergence in distribution and is defined as follows.

Definition 13.3. Suppose X is a random variable with cumulative den-
sity function F (x) and the sequence X1, X2, ... of random variables with
cumulative density functions F1(x), F2(x), ..., respectively. The sequence Xn

converges in distribution to X if

lim
n→∞

Fn(x) = F (x)

for all values x at which F (x) is continuous. The distribution of X is called
the limiting distribution of Xn.

Whenever a sequence of random variables X1, X2, ... converges in distri-
bution to the random variable X, it will be denoted by Xn

d→X.

Example 13.11. Let Y = X1 + X2 + · · · + X15 be the sum of a random
sample of size 15 from the distribution whose density function is

f(x) =

{ 3
2 x2 if −1 < x < 1

0 otherwise.

What is the approximate value of P (−0.3 ≤ Y ≤ 1.5) when one uses the
central limit theorem?

Answer: First, we find the mean µ and variance σ2 for the density function
f(x). The mean for this distribution is given by

µ =
∫ 1

−1

3
2
x3 dx

=
3
2

[
x4

4

]1

−1

= 0.
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Hence the variance of this distribution is given by

V ar(X) = E(X2)− [ E(X) ]2

=
∫ 1

−1

3
2
x4 dx

=
3
2

[
x5

5

]1

−1

=
3
5

= 0.6.

P (−0.3 ≤ Y ≤ 1.5) = P (−0.3− 0 ≤ Y − 0 ≤ 1.5− 0)

= P

(
−0.3√
15(0.6)

≤ Y − 0√
15(0.6)

≤ 1.5√
15(0.6)

)

= P (−0.10 ≤ Z ≤ 0.50)

= P (Z ≤ 0.50) + P (Z ≤ 0.10)− 1

= 0.6915 + 0.5398− 1

= 0.2313.

Example 13.12. Let X1, X2, ..., Xn be a random sample of size n = 25 from
a population that has a mean µ = 71.43 and variance σ2 = 56.25. Let X be
the sample mean. What is the probability that the sample mean is between
68.91 and 71.97?

Answer: The mean of X is given by E
(
X
)

= 71.43. The variance of X is
given by

V ar
(
X
)

=
σ2

n
=

56.25
25

= 2.25.

In order to find the probability that the sample mean is between 68.91 and
71.97, we need the distribution of the population. However, the population
distribution is unknown. Therefore, we use the central limit theorem. The
central limit theorem says that X−µ

σ√
n
∼ N (0, 1) as n approaches infinity.

Therefore
P
(
68.91 ≤ X ≤ 71.97

)

=
(

68.91− 71.43√
2.25

≤ X − 71.43√
2.25

≤ 71.97− 71.43√
2.25

)

= P (−0.68 ≤ W ≤ 0.36)

= P (W ≤ 0.36) + P (W ≤ 0.68)− 1

= 0.5941.
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Example 13.13. Light bulbs are installed successively into a socket. If we
assume that each light bulb has a mean life of 2 months with a standard
deviation of 0.25 months, what is the probability that 40 bulbs last at least
7 years?

Answer: Let Xi denote the life time of the ith bulb installed. The 40 light
bulbs last a total time of

S40 = X1 + X2 + · · · + X40.

By the central limit theorem

∑40
i=1 Xi − nµ√

nσ2
∼ N(0, 1) as n →∞.

Thus
S40 − (40)(2)√

(40)(0.25)2
∼ N(0, 1).

That is
S40 − 80

1.581
∼ N(0, 1).

Therefore
P (S40 ≥ 7(12))

= P

(
S40 − 80

1.581
≥ 84− 80

1.581

)

= P (Z ≥ 2.530)

= 0.0057.

Example 13.14. Light bulbs are installed into a socket. Assume that each
has a mean life of 2 months with standard deviation of 0.25 month. How
many bulbs n should be bought so that one can be 95% sure that the supply
of n bulbs will last 5 years?

Answer: Let Xi denote the life time of the ith bulb installed. The n light
bulbs last a total time of

Sn = X1 + X2 + · · · + Xn.

The total average life span Sn has

E (Sn) = 2n and V ar(Sn) =
n

16
.
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By the central limit theorem, we get

Sn − E (Sn)
√

n
4

∼ N(0, 1).

Thus, we seek n such that

0.95 = P (Sn ≥ 60)

= P

(
Sn − 2n

√
n

4

≥ 60− 2n
√

n
4

)

= P

(
Z ≥ 240− 8n√

n

)

= 1− P

(
Z ≤ 240− 8n√

n

)
.

From the standard normal table, we get
240− 8n√

n
= −1.645

which implies
1.645

√
n + 8n− 240 = 0.

Solving this quadratic equation for
√

n, we get
√

n = −5.375 or 5.581.

Thus n = 31.15. So we should buy 32 bulbs.

Example 13.15. American Airlines claims that the average number of peo-
ple who pay for in-flight movies, when the plane is fully loaded, is 42 with a
standard deviation of 8. A sample of 36 fully loaded planes is taken. What
is the probability that fewer than 38 people paid for the in-flight movies?

Answer: Here, we like to find P (X < 38). Since, we do not know the
distribution of X, we will use the central limit theorem. We are given that
the population mean is µ = 42 and population standard deviation is σ = 8.
Moreover, we are dealing with sample of size n = 36. Thus

P (X < 38) = P

(
X − 42

8
6

<
38− 42

8
6

)

= P (Z < −3)

= 1− P (Z < 3)

= 1− 0.9987

= 0.0013.
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Since we have not yet seen the proof of the central limit theorem, first
let us go through some examples to see the main idea behind the proof of the
central limit theorem. Later, at the end of this section a proof of the central
limit theorem will be given. We know from the central limit theorem that if
X1, X2, ..., Xn is a random sample of size n from a distribution with mean µ

and variance σ2, then

X − µ
σ√
n

d→Z ∼ N(0, 1) as n →∞.

However, the above expression is not equivalent to

X
d→Z ∼ N

(
µ,
σ2

n

)
as n →∞

as the following example shows.

Example 13.16. Let X1, X2, ..., Xn be a random sample of size n from
a gamma distribution with parameters θ = 1 and α = 1. What is the
distribution of the sample mean X? Also, what is the limiting distribution
of X as n →∞?

Answer: Since, each Xi ∼ GAM(1, 1), the probability density function of
each Xi is given by

f(x) =

{
e−x if x ≥ 0

0 otherwise
and hence the moment generating function of each Xi is

MXi(t) =
1

1− t
.

First we determine the moment generating function of the sample mean X,
and then examine this moment generating function to find the probability
distribution of X. Since

MX(t) = M 1
n

∑n

i=1
Xi

(t)

=
n∏

i=1

MXi

(
t

n

)

=
n∏

i=1

1(
1− t

n

)

=
1(

1− t
n

)n ,
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therefore X ∼ GAM
(

1
n , n
)
.

Next, we find the limiting distribution of X as n → ∞. This can be
done again by finding the limiting moment generating function of X and
identifying the distribution of X. Consider

lim
n→∞

MX(t) = lim
n→∞

1(
1− t

n

)n

=
1

limn→∞
(
1− t

n

)n

=
1

e−t

= et.

Thus, the sample mean X has a degenerate distribution, that is all the prob-
ability mass is concentrated at one point of the space of X.

Example 13.17. Let X1, X2, ..., Xn be a random sample of size n from
a gamma distribution with parameters θ = 1 and α = 1. What is the
distribution of

X − µ
σ√
n

as n →∞

where µ and σ are the population mean and variance, respectively?

Answer: From Example 13.7, we know that

MX(t) =
1(

1− t
n

)n .

Since the population distribution is gamma with θ = 1 and α = 1, the
population mean µ is 1 and population variance σ2 is also 1. Therefore

MX−1
1√
n

(t) = M√
nX−

√
n (t)

= e−
√

nt MX

(√
n t
)

= e−
√

nt 1(
1−

√
nt
n

)n

=
1

e
√

nt
(
1− t√

n

)n .
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The limiting moment generating function can be obtained by taking the limit
of the above expression as n tends to infinity. That is,

lim
n→∞

MX−1
1√
n

(t) = lim
n→∞

1

e
√

nt
(
1− t√

n

)n

= e
1
2 t2 (using MAPLE)

=
X − µ

σ√
n

∼ N(0, 1).

The following theorem is used to prove the central limit theorem.

Theorem 13.13 (Lévy Continuity Theorem). Let X1, X2, ... be a se-
quence of random variables with distribution functions F1(x), F2(x), ... and
moment generating functions MX1(t), MX2(t), ..., respectively. Let X be a
random variable with distribution function F (x) and moment generating
function MX(t). If for all t in the open interval (−h, h) for some h > 0

lim
n→∞

MXn(t) = MX(t),

then at the points of continuity of F (x)

lim
n→∞

Fn(x) = F (x).

The proof of this theorem is beyond the scope of this book.

The following limit

lim
n→∞

[
1 +

t

n
+

d(n)
n

]n
= et, if lim

n→∞
d(n) = 0, (13.1)

whose proof we leave it to the reader, can be established using advanced
calculus. Here t is independent of n.

Now we proceed to prove the central limit theorem assuming that the
moment generating function of the population X exists. Let MX−µ(t) be
the moment generating function of the random variable X − µ. We denote
MX−µ(t) as M(t) when there is no danger of confusion. Then

M(0) = 1,

M ′(0) = E(X − µ) = E(X)− µ = µ− µ = 0,

M ′′(0) = E
(
(X − µ)2

)
= σ2.





(13.2)
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By Taylor series expansion of M(t) about 0, we get

M(t) = M(0) + M ′(0) t +
1
2

M ′′(η) t2

where η ∈ (0, t). Hence using (13.2), we have

M(t) = 1 +
1
2

M ′′(η) t2

= 1 +
1
2
σ2 t2 +

1
2

M ′′(η) t2 − 1
2
σ2 t2

= 1 +
1
2
σ2 t2 +

1
2
[
M ′′(η)− σ2

]
t2.

Now using M(t) we compute the moment generating function of Zn. Note
that

Zn =
X − µ

σ√
n

=
1
σ
√

n

n∑

i=1

(Xi − µ).

Hence

MZn(t) =
n∏

i=1

MXi−µ

(
t

σ
√

n

)

=
n∏

i=1

MX−µ

(
t

σ
√

n

)

=
[

M

(
t

σ
√

n

)]n

=
[

1 +
t2

2 n
+

(M ′′(η)− σ2) t2

2 nσ2

]n

for 0 < |η| < 1
σ
√

n
|t|. Note that since 0 < |η| < 1

σ
√

n
|t|, we have

lim
n→∞

t

σ
√

n
= 0, lim

n→∞
η = 0, and lim

n→∞
M ′′(η)− σ2 = 0. (13.3)

Letting

d(n) =
(M ′′(η)− σ2) t2

2σ2

and using (13.3), we see that lim
n→∞

d(n) = 0, and

MZn(t) =
[

1 +
t2

2 n
+

d(n)
n

]n
. (13.4)

Using (13.1) we have

lim
n→∞

MZn(t) = lim
n→∞

[
1 +

t2

2 n
+

d(n)
n

]n
= e

1
2 t2 .
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Hence by the Lévy continuity theorem, we obtain

lim
n→∞

Fn(x) = Φ(x)

where Φ(x) is the cumulative density function of the standard normal distri-
bution. Thus Zn

d→Z and the proof of the theorem is now complete.

Now we give another proof of the central limit theorem using L’Hospital
rule. This proof is essentially due to Tardiff (1981).

As before, let Zn = X−µ
σ√
n

. Then MZn(t) =
[
M
(

t
σ
√

n

) ]n
where M(t) is

the moment generating function of the random variable X − µ. Hence from
(13.2), we have M(0) = 1, M ′(0) = 0, and M ′′(0) = σ2. Now applying the
L’Hospital rule twice we compute

lim
n→∞

MZn(t)

= lim
n→∞

[
M

(
t

σ
√

n

)]n

= lim
n→∞

exp

(
n ln
(

M

(
t

σ
√

n

)))

= lim
n→∞

exp




ln
(
M
(

t
σ
√

n

))

1
n




(

0
0

form since M(0) = 1
)

= lim
n→∞

exp




t

2σ

M
(

t
σ
√

n

)−1
M ′
(

t
σ
√

n

)(
− 1

n
√

n

)

− 1
n2



 (L′Hospital rule)

= lim
n→∞

exp




t

2σ

M
(

t
σ
√

n

)−1
M ′
(

t
σ
√

n

)

1√
n




(

0
0

form since M′(0) = 0
)

= lim
n→∞

exp




t2

2σ2

M
(

t
σ
√

n

)
M ′′
(

t
σ
√

n

)
−
{

M ′
(

t
σ
√

n

)}2

M
(

t
σ
√

n

)2





= exp

(
t2

2σ2

M (0) M ′′ (0)− {M ′ (0)}2

M (0)2

)

= exp

(
t2

2σ2

[
1 · σ2 − 02

])

= exp

(
1
2

t2
)

.
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Hence by the Lévy continuity theorem, we obtain

lim
n→∞

Fn(x) = Φ(x)

where Φ(x) is the cumulative density function of the standard normal distri-
bution. Thus as n →∞, the random variable Zn

d→Z, where Z ∼ N(0, 1).

Remark 13.3. In contrast to the moment generating function, since the
characteristic function of a random variable always exists, the original proof
of the central limit theorem involved the characteristic function (see for ex-
ample An Introduction to Probability Theory and Its Applications, Volume II
by Feller). In 1988, Brown gave an elementary proof using very clever Tay-
lor series expansions, where the use of the characteristic function has been
avoided.

13.4. Order Statistics

Often, sample values such as the smallest, largest, or middle observation
from a random sample provide important information. For example, the
highest flood water or lowest winter temperature recorded during the last
50 years might be useful when planning for future emergencies. The median
price of houses sold during the previous month might be useful for estimating
the cost of living. The statistics highest, lowest or median are examples of
order statistics.

Definition 13.4. Let X1, X2, ..., Xn be observations from a random sam-
ple of size n from a distribution f(x). Let X(1) denote the smallest of
{X1, X2, ..., Xn}, X(2) denote the second smallest of {X1, X2, ..., Xn}, and
similarly X(r) denote the rth smallest of {X1, X2, ..., Xn}. Then the ran-
dom variables X(1), X(2), ..., X(n) are called the order statistics of the sam-
ple X1, X2, ..., Xn. In particular, X(r) is called the rth-order statistic of
X1, X2, ..., Xn.

The sample range, R, is the distance between the smallest and the largest
observation. That is,

R = X(n) −X(1).

This is an important statistic which is defined using order statistics.

The distribution of the order statistics are very important when one uses
these in any statistical investigation. The next theorem gives the distribution
of an order statistic.
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Theorem 13.14. Let X1, X2, ..., Xn be a random sample of size n from a dis-
tribution with density function f(x). Then the probability density function
of the rth order statistic, X(r), is

g(x) =
n!

(r − 1)! (n− r)!
[F (x)]r−1 f(x) [1− F (x)]n−r ,

where F (x) denotes the cdf of f(x).

Proof: We prove the theorem assuming f(x) continuous. In the case f(x) is
discrete the proof has to be modified appropriately. Let h be a positive real
number and x be an arbitrary point in the domain of f . Let us divide the
real line into three segments, namely

IR = (−∞, x)
⋃

[x, x + h)
⋃

[x + h, ∞).

The probability, say p1, of a sample value falls into the first interval (−∞, x]
and is given by

p1 =
∫ x

−∞
f(t) dt = F (x).

Similarly, the probability p2 of a sample value falls into the second interval
[x, x + h) is

p2 =
∫ x+h

x
f(t) dt = F (x + h)− F (x).

In the same token, we can compute the probability p3 of a sample value which
falls into the third interval

p3 =
∫ ∞

x+h
f(t) dt = 1− F (x + h).

Then the probability, Ph(x), that (r−1) sample values fall in the first interval,
one falls in the second interval, and (n− r) fall in the third interval is

Ph(x) =
(

n

r − 1, 1, n− r

)
pr−1
1 p1

2 pn−r
3 =

n!
(r − 1)! (n− r)!

pr−1
1 p2 pn−r

3 .
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Hence the probability density function g(x) of the rth statistics is given by

g(x)

= lim
h→0

Ph(x)
h

= lim
h→0

[
n!

(r − 1)! (n− r)!
pr−1
1

p2

h
pn−r
3

]

=
n!

(r − 1)! (n− r)!
[F (x)]r−1 lim

h→0

F (x + h)− F (x)
h

lim
h→0

[1− F (x + h)]n−r

=
n!

(r − 1)! (n− r)!
[F (x)]r−1 F ′(x) [1− F (x)]n−r

=
n!

(r − 1)! (n− r)!
[F (x)]r−1 f(x) [1− F (x)]n−r .

Example 13.18. Let X1, X2 be a random sample from a distribution with
density function

f(x) =

{
e−x for 0 ≤ x <∞

0 otherwise.

What is the density function of Y = min{X1, X2} where nonzero?

Answer: The cumulative distribution function of f(x) is

F (x) =
∫ x

0
e−t dt

= 1− e−x

In this example, n = 2 and r = 1. Hence, the density of Y is

g(y) =
2!

0! 1!
[F (y)]0 f(y) [1− F (y)]

= 2f(y) [1− F (y)]

= 2 e−y
(
1− 1 + e−y

)

= 2 e−2y.

Example 13.19. Let Y1 < Y2 < · · · < Y6 be the order statistics from a
random sample of size 6 from a distribution with density function

f(x) =

{ 2x for 0 < x < 1

0 otherwise.
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What is the expected value of Y6?

Answer:
f(x) = 2x

F (x) =
∫ x

0
2t dt

= x2.

The density function of Y6 is given by

g(y) =
6!

5! 0!
[F (y)]5 f(y)

= 6
(
y2
)5 2y

= 12y11.

Hence, the expected value of Y6 is

E (Y6) =
∫ 1

0
y g(y) dy

=
∫ 1

0
y 12y11 dy

=
12
13
[
y13
]1
0

=
12
13

.

Example 13.20. Let X, Y and Z be independent uniform random variables
on the interval (0, a). Let W = min{X, Y, Z}. What is the expected value of(
1− W

a

)2?

Answer: The probability distribution of X (or Y or Z) is

f(x) =

{ 1
a if 0 < x < a

0 otherwise.

Thus the cumulative distribution of function of f(x) is given by

F (x) =






0 if x ≤ 0

x
a if 0 < x < a

1 if x ≥ a.
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Since W = min{X, Y, Z}, W is the first order statistic of the random sample
X, Y, Z. Thus, the density function of W is given by

g(w) =
3!

0! 1! 2!
[F (w)]0 f(w) [1− F (w)]2

= 3f(w) [1− F (w)]2

= 3
(
1− w

a

)2 (1
a

)

=
3
a

(
1− w

a

)2
.

Thus, the pdf of W is given by

g(w) =






3
a

(
1− w

a

)2 if 0 < w < a

0 otherwise.

The expected value of W is

E

[(
1− W

a

)2
]

=
∫ a

0

(
1− w

a

)2
g(w) dw

=
∫ a

0

(
1− w

a

)2 3
a

(
1− w

a

)2
dw

=
∫ a

0

3
a

(
1− w

a

)4
dw

= −3
5

[(
1− w

a

)5]a

0

=
3
5
.

Example 13.21. Let X1, X2, ..., Xn be a random sample from a population
X with uniform distribution on the interval [0, 1]. What is the probability
distribution of the sample range W := X(n) −X(1)?

Answer: To find the distribution of W , we need the joint distribution of the
random variable

(
X(n), X(1)

)
. The joint distribution of

(
X(n), X(1)

)
is given

by

h(x1, xn) = n(n− 1)f(x1)f(xn) [F (xn)− F (x1)]
n−2 ,
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where xn ≥ x1 and f(x) is the probability density function of X. To de-
termine the probability distribution of the sample range W , we consider the
transformation

U = X(1)

W = X(n) −X(1)

}

which has an inverse
X(1) = U

X(n) = U + W.

}

The Jacobian of this transformation is

J = det

(
1 0
1 1

)
= 1.

Hence the joint density of (U, W ) is given by

g(u, w) = |J |h(x1, xn)

= n(n− 1)f(u)f(u + w)[F (u + w)− F (u)]n−2

where w ≥ 0. Since f(u) and f(u+w) are simultaneously nonzero if 0 ≤ u ≤ 1
and 0 ≤ u + w ≤ 1. Hence f(u) and f(u + w) are simultaneously nonzero if
0 ≤ u ≤ 1− w. Thus, the probability of W is given by

j(w) =
∫ ∞

−∞
g(u, w) du

=
∫ ∞

−∞
n(n− 1)f(u)f(u + w)[F (u + w)− F (u)]n−2 du

= n(n− 1) wn−2

∫ 1−w

0
du

= n(n− 1) (1− w) wn−2

where 0 ≤ w ≤ 1.

13.5. Sample Percentiles

The sample median, M , is a number such that approximately one-half
of the observations are less than M and one-half are greater than M .

Definition 13.5. Let X1, X2, ..., Xn be a random sample. The sample
median M is defined as

M =






X(n+1
2 ) if n is odd

1
2

[
X(n

2 ) + X(n+2
2 )
]

if n is even.
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The median is a measure of location like sample mean.

Recall that for continuous distribution, 100pth percentile, πp, is a number
such that

p =
∫ πp

−∞
f(x) dx.

Definition 13.6. The 100pth sample percentile is defined as

πp =






X([np]) if p < 0.5

M if p = 0.5

X(n+1−[n(1−p)]) if p > 0.5.

where [b] denote the number b rounded to the nearest integer.

Example 13.22. Let X1, X2, ..., X12 be a random sample of size 12. What
is the 65th percentile of this sample?

Answer:
100p = 65

p = 0.65

n(1− p) = (12)(1− 0.65) = 4.2

[n(1− p)] = [4.2] = 4

Hence by definition of 65th percentile is

π0.65 = X(n+1−[n(1−p)])

= X(13−4)

= X(9).

Thus, the 65th percentile of the random sample X1, X2, ..., X12 is the 9th-
order statistic.

For any number p between 0 and 1, the 100pth sample percentile is an
observation such that approximately np observations are less than this ob-
servation and n(1− p) observations are greater than this.

Definition 13.7. The 25th percentile is called the lower quartile while the
75th percentile is called the upper quartile. The distance between these two
quartiles is called the interquartile range.
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Example 13.23. If a sample of size 3 from a uniform distribution over [0, 1]
is observed, what is the probability that the sample median is between 1

4 and
3
4?

Answer: When a sample of (2n + 1) random variables are observed, the
(n + 1)th smallest random variable is called the sample median. For our
problem, the sample median is given by

X(2) = 2nd smallest {X1, X2, X3}.

Let Y = X(2). The density function of each Xi is given by

f(x) =

{ 1 if 0 ≤ x ≤ 1

0 otherwise.

Hence, the cumulative density function of f(x) is

F (x) = x.

Thus the density function of Y is given by

g(y) =
3!

1! 1!
[F (y)]2−1 f(y) [1− F (y)]3−2

= 6 F (y) f(y) [1− F (y)]

= 6y (1− y).

Therefore

P

(
1
4

< Y <
3
4

)
=
∫ 3

4

1
4

g(y) dy

=
∫ 3

4

1
4

6 y (1− y) dy

= 6
[
y2

2
− y3

3

] 3
4

1
4

=
11
16

.

13.6. Review Exercises

1. Suppose we roll a die 1000 times. What is the probability that the sum
of the numbers obtained lies between 3000 and 4000?
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2. Suppose Kathy flip a coin 1000 times. What is the probability she will
get at least 600 heads?

3. At a certain large university the weight of the male students and female
students are approximately normally distributed with means and standard
deviations of 180, and 20, and 130 and 15, respectively. If a male and female
are selected at random, what is the probability that the sum of their weights
is less than 280?

4. Seven observations are drawn from a population with an unknown con-
tinuous distribution. What is the probability that the least and the greatest
observations bracket the median?

5. If the random variable X has the density function

f(x) =






2 (1− x) for 0 ≤ x ≤ 1

0 otherwise,

what is the probability that the larger of 2 independent observations of X

will exceed 1
2?

6. Let X1, X2, X3 be a random sample from the uniform distribution on the
interval (0, 1). What is the probability that the sample median is less than
0.4?

7. Let X1, X2, X3, X4, X5 be a random sample from the uniform distribution
on the interval (0, θ), where θ is unknown, and let Xmax denote the largest
observation. For what value of the constant k, the expected value of the
random variable kXmax is equal to θ?

8. A random sample of size 16 is to be taken from a normal population having
mean 100 and variance 4. What is the 90th percentile of the distribution of
the sample mean?

9. If the density function of a random variable X is given by

f(x) =






1
2x for 1

e < x < e

0 otherwise,

what is the probability that one of the two independent observations of X is
less than 2 and the other is greater than 1?
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10. Five observations have been drawn independently and at random from
a continuous distribution. What is the probability that the next observation
will be less than all of the first 5?

11. Let the random variable X denote the length of time it takes to complete
a mathematics assignment. Suppose the density function of X is given by

f(x) =






e−(x−θ) for θ < x <∞

0 otherwise,

where θ is a positive constant that represents the minimum time to complete
a mathematics assignment. If X1, X2, ..., X5 is a random sample from this
distribution. What is the expected value of X(1)?

12. Let X and Y be two independent random variables with identical prob-
ability density function given by

f(x) =

{
e−x for x > 0

0 elsewhere.

What is the probability density function of W = max{X, Y } ?

13. Let X and Y be two independent random variables with identical prob-
ability density function given by

f(x) =






3 x2

θ3 for 0 ≤ x ≤ θ

0 elsewhere,

for some θ > 0. What is the probability density function of W = min{X, Y }?

14. Let X1, X2, ..., Xn be a random sample from a uniform distribution on
the interval from 0 to 5. What is the limiting moment generating function
of X−µ

σ√
n

as n →∞?

15. Let X1, X2, ..., Xn be a random sample of size n from a normal distri-
bution with mean µ and variance 1. If the 75th percentile of the statistic
W =
∑n

i=1

(
Xi −X

)2 is 28.24, what is the sample size n ?

16. Let X1, X2, ..., Xn be a random sample of size n from a Bernoulli distri-
bution with probability of success p = 1

2 . What is the limiting distribution
the sample mean X ?
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17. Let X1, X2, ..., X1995 be a random sample of size 1995 from a distribution
with probability density function

f(x) =
e−λ λx

x!
x = 0, 1, 2, 3, ...,∞.

What is the distribution of 1995X ?

18. Suppose X1, X2, ..., Xn is a random sample from the uniform distribution
on (0, 1) and Z be the sample range. What is the probability that Z is less
than or equal to 0.5?

19. Let X1, X2, ..., X9 be a random sample from a uniform distribution on
the interval [1, 12]. Find the probability that the next to smallest is greater
than or equal to 4?

20. A machine needs 4 out of its 6 independent components to operate. Let
X1, X2, ..., X6 be the lifetime of the respective components. Suppose each is
exponentially distributed with parameter θ. What is the probability density
function of the machine lifetime?

21. Suppose X1, X2, ..., X2n+1 is a random sample from the uniform dis-
tribution on (0, 1). What is the probability density function of the sample
median X(n+1)?

22. Let X and Y be two random variables with joint density

f(x, y) =
{ 12x if 0 < y < 2x < 1

0 otherwise.

What is the expected value of the random variable Z = X2Y 3+X2−X−Y 3?

23. Let X1, X2, ..., X50 be a random sample of size 50 from a distribution
with density

f(x) =

{ 1
Γ(α) θα xα−1e−

x
θ for 0 < x <∞

0 otherwise.

What are the mean and variance of the sample mean X?

24. Let X1, X2, ..., X100 be a random sample of size 100 from a distribution
with density

f(x) =
{

e−λ λx

x! for x = 0, 1, 2, ...,∞
0 otherwise.

What is the probability that X greater than or equal to 1?
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Chapter 14

SAMPLING
DISTRIBUTIONS

ASSOCIATED WITH THE
NORMAL

POPULATIONS

Given a random sample X1, X2, ..., Xn from a population X with proba-
bility distribution f(x; θ), where θ is a parameter, a statistic is a function T

of X1, X2, ..., Xn, that is

T = T (X1, X2, ..., Xn)

which is free of the parameter θ. If the distribution of the population is
known, then sometimes it is possible to find the probability distribution of
the statistic T . The probability distribution of the statistic T is called the
sampling distribution of T . The joint distribution of the random variables
X1, X2, ..., Xn is called the distribution of the sample. The distribution of
the sample is the joint density

f(x1, x2, ..., xn; θ) = f(x1; θ)f(x2; θ) · · · f(xn; θ) =
n∏

i=1

f(xi; θ)

since the random variables X1, X2, ..., Xn are independent and identically
distributed.

Since the normal population is very important in statistics, the sampling
distributions associated with the normal population are very important. The
most important sampling distributions which are associated with the normal
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population are the followings: the chi-square distribution, the student’s t-
distribution, the F-distribution, and the beta distribution. In this chapter,
we only consider the first three distributions, since the last distribution was
considered earlier.

14.1. Chi-square distribution

In this section, we treat the Chi-square distribution, which is one of the
very useful sampling distributions.

Definition 14.1. A continuous random variable X is said to have a chi-
square distribution with r degrees of freedom if its probability density func-
tion is of the form

f(x; r) =






1

Γ( r
2 ) 2

r
2

x
r
2−1 e−

x
2 if 0 ≤ x <∞

0 otherwise,

where r > 0. If X has chi-square distribution, then we denote it by writing
X ∼ χ2(r). Recall that a gamma distribution reduces to chi-square distri-
bution if α = r

2 and θ = 2. The mean and variance of X are r and 2r,
respectively.

Thus, chi-square distribution is also a special case of gamma distribution.
Further, if r →∞, then chi-square distribution tends to normal distribution.

Example 14.1. If X ∼ GAM(1, 1), then what is the probability density
function of the random variable 2X?

Answer: We will use the moment generating method to find the distribution
of 2X. The moment generating function of a gamma random variable is given
by

M(t) = (1− θ t)−α , if t <
1
θ
.
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Since X ∼ GAM(1, 1), the moment generating function of X is given by

MX(t) =
1

1− t
, t < 1.

Hence, the moment generating function of 2X is

M2X(t) = MX(2t)

=
1

1− 2t

=
1

(1− 2t) 2
2

= MGF of χ2(2).

Hence, if X is GAM(1, 1) or is an exponential with parameter 1, then 2X is
chi-square with 2 degrees of freedom.

Example 14.2. If X ∼ χ2(5), then what is the probability that X is between
1.145 and 12.83?

Answer: The probability of X between 1.145 and 12.83 can be calculated
from the following:

P (1.145 ≤ X ≤ 12.83)

= P (X ≤ 12.83)− P (X ≤ 1.145)

=
∫ 12.83

0
f(x) dx−

∫ 1.145

0
f(x) dx

=
∫ 12.83

0

1
Γ
(

5
2

)
2 5

2
x

5
2−1 e−

x
2 dx−

∫ 1.145

0

1
Γ
(

5
2

)
2 5

2
x

5
2−1 e−

x
2 dx

= 0.975− 0.050 (from χ2 table)

= 0.925.

The above integrals are hard to evaluate and thus their values are taken from
the chi-square table.

Example 14.3. If X ∼ χ2(7), then what are values of the constants a and
b such that P (a < X < b) = 0.95?

Answer: Since

0.95 = P (a < X < b) = P (X < b)− P (X < a),

we get
P (X < b) = 0.95 + P (X < a).
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We choose a = 1.690, so that

P (X < 1.690) = 0.025.

From this, we get

P (X < b) = 0.95 + 0.025 = 0.975

Thus, from chi-square table, we get b = 16.01.

The following theorems were studied earlier in Chapters 6 and 13 and
they are very useful in finding the sampling distributions of many statistics.
We state these theorems here for the convenience of the reader.

Theorem 14.1. If X ∼ N(µ, σ2), then
(

X−µ
σ

)2
∼ χ2(1).

Theorem 14.2. If X ∼ N(µ, σ2) and X1, X2, ..., Xn is a random sample
from the population X, then

n∑

i=1

(
Xi − µ

σ

)2

∼ χ2(n).

Theorem 14.3. If X ∼ N(µ, σ2) and X1, X2, ..., Xn is a random sample
from the population X, then

(n− 1) S2

σ2
∼ χ2(n− 1).

Theorem 14.4. If X ∼ GAM(θ, α), then

2
θ

X ∼ χ2(2α).

Example 14.4. A new component is placed in service and n spares are
available. If the times to failure in days are independent exponential vari-
ables, that is Xi ∼ EXP (100), how many spares would be needed to be 95%
sure of successful operation for at least two years ?

Answer: Since Xi ∼ EXP (100),

n∑

i=1

Xi ∼ GAM(100, n).
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Hence, by Theorem 14.4, the random variable

Y =
2

100

n∑

i=1

Xi ∼ χ2(2n).

We have to find the number of spares n such that

0.95 = P

(
n∑

i=1

Xi ≥ 2 years

)

= P

(
n∑

i=1

Xi ≥ 730 days

)

= P

(
2

100

n∑

i=1

Xi ≥
2

100
730 days

)

= P

(
2

100

n∑

i=1

Xi ≥
730
50

)

= P
(
χ2(2n) ≥ 14.6

)
.

2n = 25 (from χ2 table)

Hence n = 13 (after rounding up to the next integer). Thus, 13 spares are
needed to be 95% sure of successful operation for at least two years.

Example 14.5. If X ∼ N(10, 25) and X1, X2, ..., X501 is a random sample
of size 501 from the population X, then what is the expected value of the
sample variance S2 ?

Answer: We will use the Theorem 14.3, to do this problem. By Theorem
14.3, we see that

(501− 1) S2

σ2
∼ χ2(500).

Hence, the expected value of S2 is given by

E
[
S2
]

= E

[(
25
500

) (
500
25

)
S2

]

=
(

25
500

)
E

[(
500
25

)
S2

]

=
(

1
20

)
E
[
χ2(500)

]

=
(

1
20

)
500

= 25.
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14.2. Student’s t-distribution

Here we treat the Student’s t-distribution, which is also one of the very
useful sampling distributions.

Definition 14.2. A continuous random variable X is said to have a t-
distribution with ν degrees of freedom if its probability density function is of
the form

f(x; ν) =
Γ
(
ν+1
2

)

√
π ν Γ
(
ν
2

) (
1 + x2

ν

)( ν+1
2 ) , −∞ < x <∞

where ν > 0. If X has a t-distribution with ν degrees of freedom, then we
denote it by writing X ∼ t(ν).

The t-distribution was discovered by W.S. Gosset (1876-1936) of Eng-
land who published his work under the pseudonym of student. Therefore,
this distribution is known as Student’s t-distribution. This distribution is a
generalization of the Cauchy distribution and the normal distribution. That
is, if ν = 1, then the probability density function of X becomes

f(x; 1) =
1

π (1 + x2)
−∞ < x <∞,

which is the Cauchy distribution. Further, if ν →∞, then

lim
ν→∞

f(x; ν) =
1√
2π

e−
1
2 x2

−∞ < x <∞,

which is the probability density function of the standard normal distribution.
The following figure shows the graph of t-distributions with various degrees
of freedom.

Example 14.6. If T ∼ t(10), then what is the probability that T is at least
2.228 ?
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Answer: The probability that T is at least 2.228 is given by

P (T ≥ 2.228) = 1− P (T < 2.228)

= 1− 0.975 (from t− table)

= 0.025.

Example 14.7. If T ∼ t(19), then what is the value of the constant c such
that P (|T | ≤ c) = 0.95 ?

Answer:
0.95 = P (|T | ≤ c)

= P (−c ≤ T ≤ c)

= P (T ≤ c)− 1 + P (T ≤ c)

= 2 P (T ≤ c)− 1.

Hence
P (T ≤ c) = 0.975.

Thus, using the t-table, we get for 19 degrees of freedom

c = 2.093.

Theorem 14.5. If the random variable X has a t-distribution with ν degrees
of freedom, then

E[X] =

{ 0 if ν ≥ 2

DNE if ν = 1
and

V ar[X] =

{ ν
ν−2 if ν ≥ 3

DNE if ν = 1, 2

where DNE means does not exist.

Theorem 14.6. If Z ∼ N(0, 1) and U ∼ χ2(ν) and in addition, Z and U

are independent, then the random variable W defined by

W =
Z√

U
ν

has a t-distribution with ν degrees of freedom.
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Theorem 14.7. If X ∼ N(µ, σ2) and X1, X2, ..., Xn be a random sample
from the population X, then

X − µ
S√
n

∼ t(n− 1).

Proof: Since each Xi ∼ N(µ, σ2),

X ∼ N

(
µ,
σ2

n

)
.

Thus,
X − µ

σ√
n

∼ N(0, 1).

Further, from Theorem 14.3 we know that

(n− 1)
S2

σ2
∼ χ2(n− 1).

Hence

X − µ
S√
n

=
X−µ
σ√
n√

(n−1) S2

(n−1)σ2

∼ t(n− 1) (by Theorem 14.6).

This completes the proof of the theorem.

Example 14.8. Let X1, X2, X3, X4 be a random sample of size 4 from a
standard normal distribution. If the statistic W is given by

W =
X1 −X2 + X3√

X2
1 + X2

2 + X2
3 + X2

4

,

then what is the expected value of W ?

Answer: Since Xi ∼ N(0, 1), we get

X1 −X2 + X3 ∼ N(0, 3)

and
X1 −X2 + X3√

3
∼ N(0, 1).

Further, since Xi ∼ N(0, 1), we have

X2
i ∼ χ2(1)
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and hence
X2

1 + X2
2 + X2

3 + X2
4 ∼ χ2(4)

Thus,
X1−X2+X3√

3√
X2

1+X2
2+X2

3+X2
4

4

=
(

2√
3

)
W ∼ t(4).

Now using the distribution of W , we find the expected value of W .

E [W ] =

(√
3

2

)
E

[
2√
3

W

]

=

(√
3

2

)
E [t(4)]

=

(√
3

2

)
0

= 0.

Example 14.9. If X ∼ N(0, 1) and X1, X2 is random sample of size two from
the population X, then what is the 75th percentile of the statistic W = X1√

X2
2
?

Answer: Since each Xi ∼ N(0, 1), we have

X1 ∼ N(0, 1)

X2
2 ∼ χ2(1).

Hence
W =

X1√
X2

2

∼ t(1).

The 75th percentile a of W is then given by

0.75 = P (W ≤ a)

Hence, from the t-table, we get

a = 1.0

Hence the 75th percentile of W is 1.0.

Example 14.10. Suppose X1, X2, ...., Xn is a random sample from a normal
distribution with mean µ and variance σ2. If X = 1

n

∑n
i=1 Xi and V 2 =
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1
n

∑n
i=1

(
Xi −X

)2, and Xn+1 is an additional observation, what is the value

of m so that the statistics m(X−Xn+1)
V has a t-distribution.

Answer: Since

Xi ∼ N(µ, σ2)

⇒ X ∼ N

(
µ,
σ2

n

)

⇒ X −Xn+1 ∼ N

(
µ− µ,

σ2

n
+ σ2

)

⇒ X −Xn+1 ∼ N

(
0,

(
n + 1

n

)
σ2

)

⇒ X −Xn+1

σ
√

n+1
n

∼ N(0, 1)

Now, we establish a relationship between V 2 and S2. We know that

(n− 1) S2 = (n− 1)
1

(n− 1)

n∑

i=1

(Xi −X)2

=
n∑

i=1

(Xi −X)2

= n

(
1
n

n∑

i=1

(Xi −X)2
)

= n V 2.

Hence, by Theorem 14.3

n V 2

σ2
=

(n− 1) S2

σ2
∼ χ2(n− 1).

Thus
(√

n− 1
n + 1

)
X −Xn+1

V
=

X−Xn+1

σ
√

n+1
n√

n V 2
σ2

(n−1)

∼ t(n− 1).

Thus by comparison, we get

m =
√

n− 1
n + 1

.
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14.3. Snedecor’s F -distribution

The next sampling distribution to be discussed in this chapter is
Snedecor’s F -distribution. This distribution has many applications in math-
ematical statistics. In the analysis of variance, this distribution is used to
develop the technique for testing the equalities of sample means.

Definition 14.3. A continuous random variable X is said to have a F -
distribution with ν1 and ν2 degrees of freedom if its probability density func-
tion is of the form

f(x; ν1, ν2) =






Γ( ν1+ν2
2 )
(
ν1
ν2

) ν1
2 x

ν1
2 −1

Γ( ν12 )Γ( ν22 )
(
1+

ν1
ν2

x
)( ν1+ν2

2 ) if 0 ≤ x <∞

0 otherwise,

where ν1, ν2 > 0. If X has a F -distribution with ν1 and ν2 degrees of freedom,
then we denote it by writing X ∼ F (ν1, ν2).

The F -distribution was named in honor of Sir Ronald Fisher by George
Snedecor. F -distribution arises as the distribution of a ratio of variances.
Like, the other two distributions this distribution also tends to normal dis-
tribution as ν1 and ν2 become very large. The following figure illustrates the
shape of the graph of this distribution for various degrees of freedom.

The following theorem gives us the mean and variance of Snedecor’s F -
distribution.

Theorem 14.8. If the random variable X ∼ F (ν1, ν2), then

E[X] =

{ ν2
ν2−2 if ν2 ≥ 3

DNE if ν2 = 1, 2
and

V ar[X] =






2 ν2
2 (ν1+ν2−2)

ν1 (ν2−2)2 (ν2−4) if ν2 ≥ 5

DNE if ν2 = 1, 2, 3, 4.
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Here DNE means does not exist.

Example 14.11. If X ∼ F (9, 10), what P (X ≥ 3.02) ? Also, find the mean
and variance of X.

Answer:
P (X ≥ 3.02) = 1− P (X ≤ 3.02)

= 1− P (F (9, 10) ≤ 3.02)

= 1− 0.95 (from F− table)

= 0.05.

Next, we determine the mean and variance of X using the Theorem 14.8.
Hence,

E(X) =
ν2
ν2 − 2

=
10

10− 2
=

10
8

= 1.25

and

V ar(X) =
2 ν22 (ν1 + ν2 − 2)
ν1 (ν2 − 2)2 (ν2 − 4)

=
2 (10)2 (19− 2)

9 (8)2 (6)

=
(25) (17)
(27) (16)

=
425
432

= 0.9838.

Theorem 14.9. If X ∼ F (ν1, ν2), then the random variable 1
X ∼ F (ν2, ν1).

This theorem is very useful for computing probabilities like P (X ≤
0.2439). If you look at a F -table, you will notice that the table start with val-
ues bigger than 1. Our next example illustrates how to find such probabilities
using Theorem 14.9.

Example 14.12. If X ∼ F (6, 9), what is the probability that X is less than
or equal to 0.2439 ?
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Answer: We use the above theorem to compute

P (X ≤ 0.2439) = P

(
1
X
≥ 1

0.2439

)

= P

(
F (9, 6) ≥ 1

0.2439

)
(by Theorem 14.9)

= 1− P

(
F (9, 6) ≤ 1

0.2439

)

= 1− P (F (9, 6) ≤ 4.10)

= 1− 0.95

= 0.05.

The following theorem says that F -distribution arises as the distribution
of a random variable which is the quotient of two independently distributed
chi-square random variables, each of which is divided by its degrees of free-
dom.

Theorem 14.10. If U ∼ χ2(ν1) and V ∼ χ2(ν2), and the random variables
U and V are independent, then the random variable

U
ν1
V
ν2

∼ F (ν1, ν2) .

Example 14.13. Let X1, X2, ..., X4 and Y1, Y2, ..., Y5 be two random samples
of size 4 and 5 respectively, from a standard normal population. What is the
variance of the statistic T =

(
5
4

) X2
1+X2

2+X2
3+X2

4
Y 2
1 +Y 2

2 +Y 2
3 +Y 2

4 +Y 2
5

?

Answer: Since the population is standard normal, we get

X2
1 + X2

2 + X2
3 + X2

4 ∼ χ2(4).

Similarly,
Y 2

1 + Y 2
2 + Y 2

3 + Y 2
4 + Y 2

5 ∼ χ2(5).

Thus
T =
(

5
4

)
X2

1 + X2
2 + X2

3 + X2
4

Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 + Y 2
5

=
X2

1+X2
2+X2

3+X2
4

4
Y 2
1 +Y 2

2 +Y 2
3 +Y 2

4 +Y 2
5

5

= T ∼ F (4, 5).
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Therefore
V ar(T ) = V ar[ F (4, 5) ]

=
2 (5)2 (7)
4 (3)2 (1)

=
350
36

= 9.72.

Theorem 14.11. Let X ∼ N(µ1, σ2
1) and X1, X2, ..., Xn be a random sam-

ple of size n from the population X. Let Y ∼ N(µ2, σ2
2) and Y1, Y2, ..., Ym

be a random sample of size m from the population Y . Then the statistic

S2
1

σ2
1

S2
2

σ2
2

∼ F (n− 1, m− 1),

where S2
1 and S2

2 denote the sample variances of the first and the second
sample, respectively.

Proof: Since,
Xi ∼ N(µ1, σ

2
1)

we have by Theorem 14.3, we get

(n− 1)
S2

1

σ2
1

∼ χ2(n− 1).

Similarly, since
Yi ∼ N(µ2, σ

2
2)

we have by Theorem 14.3, we get

(m− 1)
S2

2

σ2
2

∼ χ2(m− 1).

Therefore
S2

1
σ2
1

S2
2

σ2
2

=
(n−1) S2

1
(n−1)σ2

1

(m−1) S2
2

(m−1)σ2
2

∼ F (n− 1, m− 1).

This completes the proof of the theorem.

Because of this theorem, the F -distribution is also known as the variance-
ratio distribution.
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14.4. Review Exercises

1. Let X1, X2, ..., X5 be a random sample of size 5 from a normal distribution
with mean zero and standard deviation 2. Find the sampling distribution of
the statistic X1 + 2X2 −X3 + X4 + X5.

2. Let X1, X2, X3 be a random sample of size 3 from a standard normal
distribution. Find the distribution of X2

1 + X2
2 + X2

3 . If possible, find the
sampling distribution of X2

1 −X2
2 . If not, justify why you can not determine

it’s distribution.

3. Let X1, X2, X3 be a random sample of size 3 from a standard normal
distribution. Find the sampling distribution of the statistics X1+X2+X3√

X2
1+X2

2+X2
3

and X1−X2−X3√
X2

1+X2
2+X2

3
.

4. Let X1, X2, X3 be a random sample of size 3 from an exponential distri-
bution with a parameter θ > 0. Find the distribution of the sample (that is
the joint distribution of the random variables X1, X2, X3).

5. Let X1, X2, ..., Xn be a random sample of size n from a normal population
with mean µ and variance σ2 > 0. What is the expected value of the sample
variance S2 = 1

n−1

∑n
i=1

(
Xi − X̄

)2?

6. Let X1, X2, X3, X4 be a random sample of size 4 from a standard normal
population. Find the distribution of the statistic X1+X4√

X2
2+X2

3
.

7. Let X1, X2, X3, X4 be a random sample of size 4 from a standard normal
population. Find the sampling distribution (if possible) and moment gener-
ating function of the statistic 2X2

1 +3X2
2 +X2

3 +4X2
4 . What is the probability

distribution of the sample?

8. Let X equal the maximal oxygen intake of a human on a treadmill, where
the measurement are in milliliters of oxygen per minute per kilogram of
weight. Assume that for a particular population the mean of X is µ = 54.03
and the standard deviation is σ = 5.8. Let X̄ be the sample mean of a random
sample X1, X2, ..., X47 of size 47 drawn from X. Find the probability that
the sample mean is between 52.761 and 54.453.
9. Let X1, X2, ..., Xn be a random sample from a normal distribution with
mean µ and variance σ2. What is the variance of V 2 = 1

n

∑n
i=1

(
Xi −X

)2 ?

10. If X is a random variable with mean µ and variance σ2, then µ− 2σ is
called the lower 2σ point of X. Suppose a random sample X1, X2, X3, X4 is
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drawn from a chi-square distribution with two degrees of freedom. What is
the lower 2σ point of X1 + X2 + X3 + X4 ?

11. Let X and Y be independent normal random variables such that the
mean and variance of X are 2 and 4, respectively, while the mean and vari-
ance of Y are 6 and k, respectively. A sample of size 4 is taken from the
X-distribution and a sample of size 9 is taken from the Y -distribution. If
P
(
Y −X > 8

)
= 0.0228, then what is the value of the constant k ?

12. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
density function

f(x;λ) =

{
λe−λx if 0 < x <∞

0 otherwise.

What is the distribution of the statistic Y = 2λ
∑n

i=1 Xi ?

13. Suppose X has a normal distribution with mean 0 and variance 1, Y

has a chi-square distribution with n degrees of freedom, W has a chi-square
distribution with p degrees of freedom, and W, X, and Y are independent.
What is the sampling distribution of the statistic V = X√

W+Y
p+n

?

14. A random sample X1, X2, ..., Xn of size n is selected from a normal
population with mean µ and standard deviation 1. Later an additional in-
dependent observation Xn+1 is obtained from the same population. What
is the distribution of the statistic (Xn+1 − µ)2 +

∑n
i=1(Xi −X)2, where X

denote the sample mean?

15. Let T = k(X+Y )√
Z2+W 2 , where X, Y , Z, and W are independent normal

random variables with mean 0 and variance σ2 > 0. For exactly one value
of k, T has a t-distribution. If r denotes the degrees of freedom of that
distribution, then what is the value of the pair (k, r)?

16. Let X and Y be joint normal random variables with common mean 0,
common variance 1, and covariance 1

2 . What is the probability of the event(
X + Y ≤

√
3
)
, that is P

(
X + Y ≤

√
3
)
?

17. Suppose Xj = Zj − Zj−1, where j = 1, 2, ..., n and Z0, Z1, ..., Zn are
independent and identically distributed with common variance σ2. What is
the variance of the random variable 1

n

∑n
j=1 Xj ?

18. A random sample of size 5 is taken from a normal distribution with mean
0 and standard deviation 2. Find the constant k such that 0.05 is equal to the
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probability that the sum of the squares of the sample observations exceeds
the constant k.

19. Let X1, X2, ..., Xn and Y1, Y2, ..., Yn be two random sample from the
independent normal distributions with V ar[Xi] = σ2 and V ar[Yi] = 2σ2, for
i = 1, 2, ..., n and σ2 > 0. If U =

∑n
i=1

(
Xi −X

)2 and V =
∑n

i=1

(
Yi − Y

)2,
then what is the sampling distribution of the statistic 2U+V

2σ2 ?

20. Suppose X1, X2, ..., X6 and Y1, Y2, ..., Y9 are independent, identically
distributed normal random variables, each with mean zero and variance σ2 >

0. What is the 95th percentile of the statistics W =

[
6∑

i=1

X2
i

]
/




9∑

j=1

Y 2
j



?

21. Let X1, X2, ..., X6 and Y1, Y2, ..., Y8 be independent random sam-
ples from a normal distribution with mean 0 and variance 1, and Z =[
4

6∑

i=1

X2
i

]
/



3
8∑

j=1

Y 2
j



?
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Chapter 15

SOME TECHNIQUES
FOR FINDING

POINT ESTIMATORS
OF

PARAMETERS

A statistical population consists of all the measurements of interest in
a statistical investigation. Usually a population is described by a random
variable X. If we can gain some knowledge about the probability density
function f(x; θ) of X, then we also gain some knowledge about the population
under investigation.

A sample is a portion of the population usually chosen by method of
random sampling and as such it is a set of random variables X1, X2, ..., Xn

with the same probability density function f(x; θ) as the population. Once
the sampling is done, we get

X1 = x1, X2 = x2, · · · , Xn = xn

where x1, x2, ..., xn are the sample data.
Every statistical method employs a random sample to gain information

about the population. Since the population is characterized by the proba-
bility density function f(x; θ), in statistics one makes statistical inferences
about the population distribution f(x; θ) based on sample information. A
statistical inference is a statement based on sample information about the
population. There are three types of statistical inferences (1) estimation (2)
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hypothesis testing and (3) prediction. The goal of this chapter is to examine
some well known point estimation methods.

In point estimation, we try to find the parameter θ of the population
distribution f(x; θ) from the sample information. Thus, in the parametric
point estimation one assumes the functional form of the pdf f(x; θ) to be
known and only estimate the unknown parameter θ of the population using
information available from the sample.

Definition 15.1. Let X be a population with the density function f(x; θ),
where θ is an unknown parameter. The set of all admissible values of θ is
called a parameter space and it is denoted by Ω, that is

Ω = {θ ∈ IRn | f(x; θ) is a pdf }

for some natural number m.

Example 15.1. If X ∼ EXP (θ), then what is the parameter space of θ ?

Answer: Since X ∼ EXP (θ), the density function of X is given by

f(x; θ) =
1
θ

e−
x
θ .

If θ is zero or negative then f(x; θ) is not a density function. Thus, the
admissible values of θ are all the positive real numbers. Hence

Ω = {θ ∈ IR | 0 < θ < ∞}
= IR+.

Example 15.2. If X ∼ N
(
µ, σ2
)
, what is the parameter space?

Answer: The parameter space Ω is given by

Ω =
{
θ ∈ IR2 | f(x; θ) ∼ N

(
µ, σ2
)}

=
{
(µ, σ) ∈ IR2 | −∞ < µ <∞, 0 < σ < ∞

}

= IR× IR+

= upper half plane.

In general, a parameter space is a subset of IRm. Statistics concerns
with the estimation of the unknown parameter θ from a random sample
X1, X2, ..., Xn. Recall that a statistic is a function of X1, X2, ..., Xn and free
of the population parameter θ.
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Definition 15.2. Let X ∼ f(x; θ) and X1, X2, ..., Xn be a random sample
from the population X. Any statistic that can be used to guess the parameter
θ is called an estimator of θ. The numerical value of this statistic is called
an estimate of θ. The estimator of the parameter θ is denoted by θ̂.

One of the basic problems is how to find an estimator of population
parameter θ. There are several methods for finding an estimator of θ. Some
of these methods are:

(1) Moment Method
(2) Maximum Likelihood Method
(3) Bayes Method
(4) Least Squares Method
(5) Minimum Chi-Squares Method
(6) Minimum Distance Method

In this chapter, we only discuss the first three methods of estimating a
population parameter.

15.1. Moment Method

Let X1, X2, ..., Xn be a random sample from a population X with proba-
bility density function f(x; θ1, θ2, ..., θm), where θ1, θ2, ..., θm are m unknown
parameters. Let

E
(
Xk
)

=
∫ ∞

−∞
xk f(x; θ1, θ2, ..., θm) dx

be the kth population moment about 0. Further, let

Mk =
1
n

n∑

i=1

Xk
i

be the kth sample moment about 0.
In moment method, we find the estimator for the parameters θ1, θ2, ..., θm

by equating the first m population moments (if they exist) to the first m

sample moments, that is
E (X) = M1

E
(
X2
)

= M2

E
(
X3
)

= M3

...

E (Xm) = Mm
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The moment method is one of the classical methods for estimating pa-
rameters and motivation comes from the fact that the sample moments are
in some sense estimates for the population moments. The moment method
was first discovered by British statistician Karl Pearson in 1902. Now we
provide some examples to illustrate this method.

Example 15.3. Let X ∼ N
(
µ, σ2
)

and X1, X2, ..., Xn be a random sample
of size n from the population X. What are the estimators of the population
parameters µ and σ2 if we use the moment method?

Answer: Since the population is normal, that is

X ∼ N
(
µ, σ2
)

we know that
E (X) = µ

E
(
X2
)

= σ2 + µ2.

Hence
µ = E (X)

= M1

=
1
n

n∑

i=1

Xi

= X.

Therefore, the estimator of the parameter µ is X, that is

µ̂ = X.

Next, we find the estimator of σ2 equating E(X2) to M2. Note that

σ2 = σ2 + µ2 − µ2

= E
(
X2
)
− µ2

= M2 − µ2

=
1
n

n∑

i=1

X2
i −X

2

=
1
n

n∑

i=1

(
Xi −X

)2
.

The last line follows from the fact that
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1
n

n∑

i=1

(
Xi −X

)2 =
1
n

n∑

i=1

(
X2

i − 2 Xi X + X
2
)

=
1
n

n∑

i=1

X2
i −

1
n

n∑

i=1

2 Xi X +
1
n

n∑

i=1

X
2

=
1
n

n∑

i=1

X2
i − 2 X

1
n

n∑

i=1

Xi + X
2

=
1
n

n∑

i=1

X2
i − 2 X X + X

2

=
1
n

n∑

i=1

X2
i −X

2
.

Thus, the estimator of σ2 is 1
n

n∑

i=1

(
Xi −X

)2, that is

σ̂2 =
1
n

n∑

i=1

(
Xi −X

)2
.

Example 15.4. Let X1, X2, ..., Xn be a random sample of size n from a
population X with probability density function

f(x; θ) =






θ xθ−1 if 0 < x < 1

0 otherwise,
where 0 < θ < ∞ is an unknown parameter. Using the method of moment
find an estimator of θ ? If x1 = 0.2, x2 = 0.6, x3 = 0.5, x4 = 0.3 is a random
sample of size 4, then what is the estimate of θ ?

Answer: To find an estimator, we shall equate the population moment to
the sample moment. The population moment E(X) is given by

E(X) =
∫ 1

0
x f(x; θ) dx

=
∫ 1

0
x θ xθ−1 dx

= θ
∫ 1

0
xθ dx

=
θ

θ + 1
[
xθ+1
]1
0

=
θ

θ + 1
.
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We know that M1 = X. Now setting M1 equal to E(X) and solving for θ,
we get

X =
θ

θ + 1
that is

θ =
X

1−X
,

where X is the sample mean. Thus, the statistic X
1−X

is an estimator of the
parameter θ. Hence

θ̂ =
X

1−X
.

Since x1 = 0.2, x2 = 0.6, x3 = 0.5, x4 = 0.3, we have X = 0.4 and

θ̂ =
0.4

1− 0.4
=

2
3

is an estimate of the θ.

Example 15.5. What is the basic principle of the moment method?

Answer: To choose a value for the unknown population parameter for which
the observed data have the same moments as the population.

Example 15.6. Suppose X1, X2, ..., X7 is a random sample from a popula-
tion X with density function

f(x;β) =






x6 e
− x
β

Γ(7) β7 if 0 < x <∞

0 otherwise.
Find an estimator of β by the moment method.

Answer: Since, we have only one parameter, we need to compute only the
first population moment E(X) about 0. Thus,

E(X) =
∫ ∞

0
x f(x;β) dx

=
∫ ∞

0
x

x6 e−
x
β

Γ(7)β7
dx

=
1

Γ(7)

∫ ∞

0

(
x

β

)7

e−
x
β dx

= β
1

Γ(7)

∫ ∞

0
y7 e−y dy

= β
1

Γ(7)
Γ(8)

= 7β.
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Since M1 = X, equating E(X) to M1, we get

7β = X

that is
β =

1
7

X.

Therefore, the estimator of β by the moment method is given by

β̂ =
1
7

X.

Example 15.7. Suppose X1, X2, ..., Xn is a random sample from a popula-
tion X with density function

f(x; θ) =

{ 1
θ if 0 < x < θ

0 otherwise.

Find an estimator of θ by the moment method.

Answer: Examining the density function of the population X, we see that
X ∼ UNIF (0, θ). Therefore

E(X) =
θ

2
.

Now, equating this population moment to the sample moment, we obtain

θ

2
= E(X) = M1 = X.

Therefore, the estimator of θ is

θ̂ = 2 X.

Example 15.8. Suppose X1, X2, ..., Xn is a random sample from a popula-
tion X with density function

f(x;α, β) =

{ 1
β−α if α < x < β

0 otherwise.

Find the estimators of α and β by the moment method.
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Answer: Examining the density function of the population X, we see that
X ∼ UNIF (α, β). Since, the distribution has two unknown parameters, we
need the first two population moments. Therefore

E(X) =
α+ β

2
and E(X2) =

(β − α)2

12
+ E(X)2.

Equating these moments to the corresponding sample moments, we obtain

α+ β
2

= E(X) = M1 = X

that is
α+ β = 2X (1)

and
(β − α)2

12
+ E(X)2 = E(X2) = M2 =

1
n

n∑

i=1

X2
i

which is

(β − α)2 = 12

[
1
n

n∑

i=1

X2
i − E(X)2

]

= 12

[
1
n

n∑

i=1

X2
i −X

2

]

= 12

[
1
n

n∑

i=1

(
X2

i −X
)2
]

.

Hence, we get

β − α =

√√√√ 12
n

n∑

i=1

(
X2

i −X
)2

. (2)

Adding equation (1) to equation (2), we obtain

2β = 2X ± 2

√√√√ 3
n

n∑

i=1

(
X2

i −X
)2

that is

β = X ±

√√√√ 3
n

n∑

i=1

(
X2

i −X
)2

.

Similarly, subtracting (2) from (1), we get

α = X ∓

√√√√ 3
n

n∑

i=1

(
X2

i −X
)2

.
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Since, α < β, we see that the estimators of α and β are

α̂ = X −

√√√√ 3
n

n∑

i=1

(
X2

i −X
)2 and β̂ = X +

√√√√ 3
n

n∑

i=1

(
X2

i −X
)2

.

15.2. Maximum Likelihood Method

The maximum likelihood method was first used by Sir Ronald Fisher in
1912 for finding estimator of a unknown parameter. However, the method
originated in the works of Gauss and Bernoulli. Next, we describe the method
in detail.

Definition 15.3. Let X1, X2, ..., Xn be a random sample from a population
X with probability density function f(x; θ), where θ is an unknown param-
eter. The likelihood function, L(θ), is the distribution of the sample. That
is

L(θ) =
n∏

i=1

f(xi; θ).

This definition says that the likelihood function of a random sample
X1, X2, ..., Xn is the joint density of the random variables X1, X2, ..., Xn.

The θ that maximizes the likelihood function L(θ) is called the maximum
likelihood estimator of θ, and it is denoted by θ̂. Hence

θ̂ = Arg sup
θ∈Ω

L(θ),

where Ω is the parameter space of θ so that L(θ) is the joint density of the
sample.

The method of maximum likelihood in a sense picks out of all the possi-
ble values of θ the one most likely to have produced the given observations
x1, x2, ..., xn. The method is summarized below: (1) Obtain a random sample
x1, x2, ..., xn from the distribution of a population X with probability density
function f(x; θ); (2) define the likelihood function for the sample x1, x2, ..., xn

by L(θ) = f(x1; θ)f(x2; θ) · · · f(xn; θ); (3) find the expression for θ that max-
imizes L(θ). This can be done directly or by maximizing lnL(θ); (4) replace
θ by θ̂ to obtain an expression for the maximum likelihood estimator for θ;
(5) find the observed value of this estimator for a given sample.
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Example 15.9. If X1, X2, ..., Xn is a random sample from a distribution
with density function

f(x; θ) =






(1− θ) x−θ if 0 < x < 1

0 elsewhere,

what is the maximum likelihood estimator of θ ?

Answer: The likelihood function of the sample is given by

L(θ) =
n∏

i=1

f(xi; θ).

Therefore

lnL(θ) = ln

(
n∏

i=1

f(xi; θ)

)

=
n∑

i=1

ln f(xi; θ)

=
n∑

i=1

ln
[
(1− θ) xi

−θ
]

= n ln(1− θ)− θ
n∑

i=1

lnxi.

Now we maximize ln L(θ) with respect to θ.

d lnL(θ)
dθ

=
d

dθ

(
n ln(1− θ)− θ

n∑

i=1

lnxi

)

= − n

1− θ −
n∑

i=1

lnxi.

Setting this derivative d ln L(θ)
dθ to 0, we get

d lnL(θ)
dθ

= − n

1− θ −
n∑

i=1

lnxi = 0

that is
1

1− θ = − 1
n

n∑

i=1

lnxi



Probability and Mathematical Statistics 419

or
1

1− θ = − 1
n

n∑

i=1

lnxi = −lnx.

or
θ = 1 +

1
lnx

.

This θ can be shown to be maximum by the second derivative test and we
leave this verification to the reader. Therefore, the estimator of θ is

θ̂ = 1 +
1

lnX
.

Example 15.10. If X1, X2, ..., Xn is a random sample from a distribution
with density function

f(x;β) =






x6 e
− x
β

Γ(7) β7 if 0 < x <∞

0 otherwise,

then what is the maximum likelihood estimator of β ?

Answer: The likelihood function of the sample is given by

L(β) =
n∏

i=1

f(xi;β).

Thus,

lnL(β) =
n∑

i=1

ln f(xi, β)

= 6
n∑

i=1

lnxi −
1
β

n∑

i=1

xi − n ln(6!)− 7n ln(β).

Therefore
d

dβ
lnL(β) =

1
β2

n∑

i=1

xi −
7n

β
.

Setting this derivative d
dβ lnL(β) to zero, we get

1
β2

n∑

i=1

xi −
7n

β
= 0

which yields

β =
1
7n

n∑

i=1

xi.
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This β can be shown to be maximum by the second derivative test and again
we leave this verification to the reader. Hence, the estimator of β is given by

β̂ =
1
7

X.

Remark 15.1. Note that this maximum likelihood estimator of β is same
as the one found for β using the moment method in Example 15.6. However,
in general the estimators by different methods are different as the following
example illustrates.

Example 15.11. If X1, X2, ..., Xn is a random sample from a distribution
with density function

f(x; θ) =






1
θ if 0 < x < θ

0 otherwise,

then what is the maximum likelihood estimator of θ ?

Answer: The likelihood function of the sample is given by

L(θ) =
n∏

i=1

f(xi; θ)

=
n∏

i=1

(
1
θ

)
θ > xi (i = 1, 2, 3, ..., n)

=
(

1
θ

)n

θ > max{x1, x2, ..., xn}.

Hence the parameter space of θ with respect to L(θ) is given by

Ω = {θ ∈ IR | xmax < θ < ∞} = (xmax, ∞).

Now we maximize L(θ) on Ω. First, we compute lnL(θ) and then differentiate
it to get

lnL(θ) = −n ln(θ)

and
d

dθ
lnL(θ) = −n

θ
< 0.

Therefore lnL(θ) is a decreasing function of θ and as such the maximum of
lnL(θ) occurs at the left end point of the interval (xmax, ∞). Therefore, at
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θ = xmax the likelihood function achieve maximum. Hence the likelihood
estimator of θ is given by

θ̂ = X(n)

where X(n) denotes the nth order statistic of the given sample.

Thus, Example 15.7 and Example 15.11 say that the if we estimate the
parameter θ of a distribution with uniform density on the interval (0, θ), then
the maximum likelihood estimator is given by

θ̂ = X(n)

where as
θ̂ = 2 X

is the estimator obtained by the method of moment. Hence, in general these
two methods do not provide the same estimator of an unknown parameter.

Example 15.12. Let X1, X2, ..., Xn be a random sample from a distribution
with density function

f(x; θ) =






√
2
π e−

1
2 (x−θ)2 if x ≥ θ

0 elsewhere.
What is the maximum likelihood estimator of θ ?

Answer: The likelihood function L(θ) is given by

L(θ) =

(√
2
π

)n n∏

i=1

e−
1
2 (xi−θ)2 xi ≥ θ (i = 1, 2, 3, ..., n).

Hence the parameter space of θ is given by

Ω = {θ ∈ IR | 0 ≤ θ ≤ xmin} = [0, xmin], ,

where xmin = min{x1, x2, ..., xn}. Now we evaluate the logarithm of the
likelihood function.

lnL(θ) =
n

2
ln
(

2
π

)
− 1

2

n∑

i=1

(xi − θ)2,

where θ is on the interval [0, xmin ]. Now we maximize ln L(θ) subject to the
condition 0 ≤ θ ≤ xmin. Taking the derivative, we get

d

dθ
lnL(θ) = −1

2

n∑

i=1

(xi − θ) 2(−1) =
n∑

i=1

(xi − θ).
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In this example, if we equate the derivative to zero, then we get θ = x. But
this value of θ is not on the parameter space Ω. Thus, θ = x is not the
solution. Hence to find the solution of this optimization process, we examine
the behavior of the lnL(θ) on the interval [0, xmin ]. Note that

d

dθ
lnL(θ) = −1

2

n∑

i=1

(xi − θ) 2(−1) =
n∑

i=1

(xi − θ) > 0

since each xi is bigger than θ. Therefore, the function lnL(θ) is an increasing
function on the interval [0, xmin ] and as such it will achieve maximum at the
right end point of the interval [0, xmin ]. Therefore, the maximum likelihood
estimator of θ is given by

X̂ = X(1)

where X(1) denotes the smallest observation in the random sample
X1, X2, ..., Xn.

Example 15.13. Let X1, X2, ..., Xn be a random sample from a normal
population with mean µ and variance σ2. What are the maximum likelihood
estimators of µ and σ2 ?

Answer: Since X ∼ N(µ, σ2), the probability density function of X is given
by

f(x; µ, σ) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )2

.

The likelihood function of the sample is given by

L(µ, σ) =
n∏

i=1

1
σ
√

2π
e−

1
2 ( xi−µ

σ )2

.

Hence, the logarithm of this likelihood function is given by

lnL(µ, σ) = −n

2
ln(2π)− n ln(σ)− 1

2σ2

n∑

i=1

(xi − µ)2.

Taking the partial derivatives of lnL(µ, σ) with respect to µ and σ, we get

∂

∂µ
lnL(µ, σ) = − 1

2σ2

n∑

i=1

(xi − µ) (−2) =
1
σ2

n∑

i=1

(xi − µ).

and
∂

∂σ
lnL(µ, σ) = −n

σ
+

1
σ3

n∑

i=1

(xi − µ)2.
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Setting ∂
∂µ lnL(µ, σ) = 0 and ∂

∂σ lnL(µ, σ) = 0, and solving for the unknown
µ and σ, we get

µ =
1
n

n∑

i=1

xi = x.

Thus the maximum likelihood estimator of µ is

µ̂ = X.

Similarly, we get

−n

σ
+

1
σ3

n∑

i=1

(xi − µ)2 = 0

implies

σ2 =
1
n

n∑

i=1

(xi − µ)2.

Again µ and σ2 found by the first derivative test can be shown to be maximum
using the second derivative test for the functions of two variables. Hence,
using the estimator of µ in the above expression, we get the estimator of σ2

to be

σ̂2 =
1
n

n∑

i=1

(Xi −X)2.

Example 15.14. Suppose X1, X2, ..., Xn is a random sample from a distri-
bution with density function

f(x;α, β) =

{ 1
β−α if α < x < β

0 otherwise.

Find the estimators of α and β by the method of maximum likelihood.

Answer: The likelihood function of the sample is given by

L(α, β) =
n∏

i=1

1
β − α =

(
1

β − α

)n

for all α ≤ xi for (i = 1, 2, ..., n) and for all β ≥ xi for (i = 1, 2, ..., n). Hence,
the domain of the likelihood function is

Ω = {(α, β) | 0 < α ≤ x(1) and x(n) ≤ β <∞}.
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It is easy to see that L(α, β) is maximum if α = x(1) and β = x(n). Therefore,
the maximum likelihood estimator of α and β are

α̂ = X(1) and β̂ = X(n).

The maximum likelihood estimator θ̂ of a parameter θ has a remarkable
property known as the invariance property. This invariance property says
that if θ̂ is a maximum likelihood estimator of θ, then g(θ̂) is the maximum
likelihood estimator of g(θ), where g is a function from IRk to a subset of IRm.
This result was proved by Zehna in 1966. We state this result as a theorem
without a proof.

Theorem 15.1. Let θ̂ be a maximum likelihood estimator of a parameter θ
and let g(θ) be a function of θ. Then the maximum likelihood estimator of
g(θ) is given by g

(
θ̂
)
.

Now we give two examples to illustrate the importance of this theorem.

Example 15.15. Let X1, X2, ..., Xn be a random sample from a normal
population with mean µ and variance σ2. What are the maximum likelihood
estimators of σ and µ− σ?

Answer: From Example 15.13, we have the maximum likelihood estimator
of µ and σ2 to be

µ̂ = X

and

σ̂2 =
1
n

n∑

i=1

(Xi −X)2 =: Σ2 (say).

Now using the invariance property of the maximum likelihood estimator we
have

σ̂ = Σ

and
µ̂− σ = X − Σ.

Example 15.16. Suppose X1, X2, ..., Xn is a random sample from a distri-
bution with density function

f(x;α, β) =

{ 1
β−α if α < x < β

0 otherwise.

Find the estimator of
√
α2 + β2 by the method of maximum likelihood.
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Answer: From Example 15.14, we have the maximum likelihood estimator
of α and β to be

α̂ = X(1) and β̂ = X(n),

respectively. Now using the invariance property of the maximum likelihood
estimator we see that the maximum likelihood estimator of

√
α2 + β2 is√

X2
(1) + X2

(n).

The concept of information in statistics was introduced by Sir Ronald
Fisher, and it is known as Fisher information.

Definition 15.4. Let X be an observation from a population with proba-
bility density function f(x; θ). Suppose f(x; θ) is continuous, twice differen-
tiable and it’s support does not depend on θ. Then the Fisher information,
I(θ), in a single observation X about θ is given by

I(θ) =
∫ ∞

−∞

[
d ln f(x; θ)

dθ

]2
f(x; θ) dx.

Thus I(θ) is the expected value of the square of the random variable
d ln f(X;θ)

dθ . That is,

I(θ) = E

([
d ln f(X; θ)

dθ

]2)
.

In the following lemma, we give an alternative formula for the Fisher
information.

Lemma 15.1. The Fisher information contained in a single observation
about the unknown parameter θ can be given alternatively as

I(θ) = −
∫ ∞

−∞

[
d2 ln f(x; θ)

dθ2

]
f(x; θ) dx.

Proof: Since f(x; θ) is a probability density function,
∫ ∞

−∞
f(x; θ) dx = 1. (3)

Differentiating (3) with respect to θ, we get

d

dθ

∫ ∞

−∞
f(x; θ) dx = 0.
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Rewriting the last equality, we obtain
∫ ∞

−∞

df(x; θ)
dθ

1
f(x; θ)

f(x; θ) dx = 0

which is ∫ ∞

−∞

d ln f(x; θ)
dθ

f(x; θ) dx = 0. (4)

Now differentiating (4) with respect to θ, we see that
∫ ∞

−∞

[
d2 ln f(x; θ)

dθ2
f(x; θ) +

d ln f(x; θ)
dθ

df(x; θ)
dθ

]
dx = 0.

Rewriting the last equality, we have
∫ ∞

−∞

[
d2 ln f(x; θ)

dθ2
f(x; θ) +

d ln f(x; θ)
dθ

df(x; θ)
dθ

1
f(x; θ)

f(x; θ)
]

dx = 0

which is
∫ ∞

−∞

(
d2 ln f(x; θ)

dθ2
+
[
d ln f(x; θ)

dθ

]2)
f(x; θ) dx = 0.

The last equality implies that

∫ ∞

−∞

[
d ln f(x; θ)

dθ

]2
f(x; θ) dx = −

∫ ∞

−∞

[
d2 ln f(x; θ)

dθ2

]
f(x; θ) dx.

Hence using the definition of Fisher information, we have

I(θ) = −
∫ ∞

−∞

[
d2 ln f(x; θ)

dθ2

]
f(x; θ) dx

and the proof of the lemma is now complete.

The following two examples illustrate how one can determine Fisher in-
formation.

Example 15.17. Let X be a single observation taken from a normal pop-
ulation with unknown mean µ and known variance σ2. Find the Fisher
information in a single observation X about µ.

Answer: Since X ∼ N(µ, σ2), the probability density of X is given by

f(x; µ) =
1√

2πσ2
e−

1
2σ2 (x−µ)2 .
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Hence

ln f(x; µ) = −1
2

ln(2πσ2)− (x− µ)2

2σ2
.

Therefore
d ln f(x; µ)

dµ
=

x− µ

σ2

and
d2 ln f(x; µ)

dµ2
= − 1

σ2
.

Hence

I(µ) = −
∫ ∞

−∞

(
− 1
σ2

)
f(x; µ) dx =

1
σ2

.

Example 15.18. Let X1, X2, ..., Xn be a random sample from a normal
population with unknown mean µ and known variance σ2. Find the Fisher
information in this sample of size n about µ.

Answer: Let In(µ) be the required Fisher information. Then from the
definition, we have

In(µ) = −E

(
d2 ln f(X1, X2, ..., Xn; µ

dµ2

)

= −E

(
d2

dµ2
{ln f(X1; µ) + · · · + ln f(Xn; µ)}

)

= −E

(
d2 ln f(X1; µ)

dµ2

)
− · · · − E

(
d2 ln f(Xn; µ)

dµ2

)

= I(µ) + · · · + I(µ)

= n I(µ)

= n
1
σ2

(using Example 15.17).

This example shows that if X1, X2, ..., Xn is a random sample from a
population X ∼ f(x; θ), then the Fisher information, In(θ), in a sample of
size n about the parameter θ is equal to n times the Fisher information in X

about θ. Thus
In(θ) = n I(θ).

If X is a random variable with probability density function f(x; θ), where
θ = (θ1, ..., θn) is an unknown parameter vector then the Fisher information,
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I(θ), is a n× n matrix given by

I(θ) = (Iij(θ))

=
(
−E

(
∂2 ln f(X; θ)
∂θi ∂θj

))
.

Example 15.19. Let X1, X2, ..., Xn be a random sample from a normal
population with mean µ and variance σ2. What is the Fisher information
matrix, In(µ, σ2), of the sample of size n about the parameters µ and σ2?

Answer: Let us write θ1 = µ and θ2 = σ2. The Fisher information, In(θ),
in a sample of size n about the parameter (θ1, θ2) is equal to n times the
Fisher information in the population about (θ1, θ2), that is

In(θ1, θ2) = n I(θ1, θ2). (5)

Since there are two parameters θ1 and θ2, the Fisher information matrix
I(θ1, θ2) is a 2× 2 matrix given by

I(θ1, θ2) =




I11(θ1, θ2) I12(θ1, θ2)

I21(θ1, θ2) I22(θ1, θ2)



 (6)

where
Iij(θ1, θ2) = −E

(
∂2 ln f(X; θ1, θ2)

∂θi ∂θj

)

for i = 1, 2 and j = 1, 2. Now we proceed to compute Iij . Since

f(x; θ1, θ2) =
1√

2π θ2
e−

(x−θ1)2

2 θ2

we have
ln f(x; θ1, θ2) = −1

2
ln(2π θ2)−

(x− θ1)2

2 θ2
.

Taking partials of ln f(x; θ1, θ2), we have

∂ ln f(x; θ1, θ2)
∂θ1

=
x− θ1
θ2

,

∂ ln f(x; θ1, θ2)
∂θ2

= − 1
2 θ2

+
(x− θ1)2

2 θ22
,

∂2 ln f(x; θ1, θ2)
∂θ21

= − 1
θ2

,

∂2 ln f(x; θ1, θ2)
∂θ22

=
1

2 θ22
− (x− θ1)2

θ32
,

∂2 ln f(x; θ1, θ2)
∂θ1 ∂θ2

= −x− θ1
θ22

.
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Hence
I11(θ1, θ2) = −E

(
− 1
θ2

)
=

1
θ2

=
1
σ2

.

Similarly,

I21(θ1, θ2) = I12(θ1, θ2) = −E

(
−X − θ1

θ22

)
=

E(X)
θ22

− θ1
θ22

=
θ1
θ22
− θ1
θ22

= 0

and

I22(θ1, θ2) = −E

(
− (X − θ1)2

θ32
+

1
2θ22

)

=
E
(
(X − θ1)2

)

θ32
− 1

2θ22
=
θ2
θ32
− 1

2θ22
=

1
2θ22

=
1

2σ4
.

Thus from (5), (6) and the above calculations, the Fisher information matrix
is given by

In(θ1, θ2) = n




1
σ2 0

0 1
2σ4



 =




n
σ2 0

0 n
2σ4



 .

Now we present an important theorem about the maximum likelihood
estimator without a proof.

Theorem 15.2. Under certain regularity conditions on the f(x; θ) the max-
imum likelihood estimator θ̂ of θ based on a random sample of size n from
a population X with probability density f(x; θ) is asymptotically normally
distributed with mean θ and variance 1

n I(θ) . That is

θ̂ML ∼ N

(
θ,

1
n I(θ)

)
as n →∞.

The following example shows that the maximum likelihood estimator of
a parameter is not necessarily unique.

Example 15.20. If X1, X2, ..., Xn is a random sample from a distribution
with density function

f(x; θ) =






1
2 if θ − 1 ≤ x ≤ θ + 1

0 otherwise,

then what is the maximum likelihood estimator of θ?
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Answer: The likelihood function of this sample is given by

L(θ) =

{( 1
2

)n if max{x1, ..., xn} − 1 ≤ θ ≤ min{x1, ..., xn} + 1

0 otherwise.

Since the likelihood function is a constant, any value in the interval
[max{x1, ..., xn} − 1, min{x1, ..., xn} + 1] is a maximum likelihood estimate
of θ.

Example 15.21. What is the basic principle of maximum likelihood esti-
mation?

Answer: To choose a value of the parameter for which the observed data
have as high a probability or density as possible. In other words a maximum
likelihood estimate is a parameter value under which the sample data have
the highest probability.

15.3. Bayesian Method

In the classical approach, the parameter θ is assumed to be an unknown,
but fixed quantity. A random sample X1, X2, ..., Xn is drawn from a pop-
ulation with probability density function f(x; θ) and based on the observed
values in the sample, knowledge about the value of θ is obtained.

In Bayesian approach θ is considered to be a quantity whose variation can
be described by a probability distribution (known as the prior distribution).
This is a subjective distribution, based on the experimenter’s belief, and is
formulated before the data are seen (and hence the name prior distribution).
A sample is then taken from a population where θ is a parameter and the
prior distribution is updated with this sample information. This updated
prior is called the posterior distribution. The updating is done with the help
of Bayes’ theorem and hence the name Bayesian method.

In this section, we shall denote the population density f(x; θ) as f(x/θ),
that is the density of the population X given the parameter θ.

Definition 15.5. Let X1, X2, ..., Xn be a random sample from a distribution
with density f(x/θ), where θ is the unknown parameter to be estimated.
The probability density function of the random variable θ is called the prior
distribution of θ and usually denoted by h(θ).

Definition 15.6. Let X1, X2, ..., Xn be a random sample from a distribution
with density f(x/θ), where θ is the unknown parameter to be estimated. The
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conditional density, k(θ/x1, x2, ..., xn), of θ given the sample x1, x2, ..., xn is
called the posterior distribution of θ.

Example 15.22. Let X1 = 1, X2 = 2 be a random sample of size 2 from a
distribution with probability density function

f(x/θ) =
(

3
x

)
θx(1− θ)3−x, x = 0, 1, 2, 3.

If the prior density of θ is

h(θ) =






k if 1
2 < θ < 1

0 otherwise,

what is the posterior distribution of θ ?

Answer: Since h(θ) is the probability density of θ, we should get

∫ 1

1
2

h(θ) dθ = 1

which implies
∫ 1

1
2

k dθ = 1.

Therefore k = 2. The joint density of the sample and the parameter is given
by

u(x1, x2, θ) = f(x1/θ)f(x2/θ)h(θ)

=
(

3
x1

)
θx1(1− θ)3−x1

(
3
x2

)
θx2(1− θ)3−x2 2

= 2
(

3
x1

)(
3
x2

)
θx1+x2(1− θ)6−x1−x2 .

Hence,

u(1, 2, θ) = 2
(

3
1

)(
3
2

)
θ3(1− θ)3

= 18 θ3(1− θ)3.
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The marginal distribution of the sample

g(1, 2) =
∫ 1

1
2

u(1, 2, θ) dθ

=
∫ 1

1
2

18 θ3(1− θ)3 dθ

= 18
∫ 1

1
2

θ3
(
1 + 3θ2 − 3θ − θ3

)
dθ

= 18
∫ 1

1
2

(
θ3 + 3θ5 − 3θ4 − θ6

)
dθ

=
9

140
.

The conditional distribution of the parameter θ given the sample X1 = 1 and
X2 = 2 is given by

k(θ/x1 = 1, x2 = 2) =
u(1, 2, θ)
g(1, 2)

=
18 θ3 (1− θ)3

9
140

= 280 θ3 (1− θ)3.

Therefore, the posterior distribution of θ is

k(θ/x1 = 1, x2 = 2) =

{
280 θ3 (1− θ)3 if 1

2 < θ < 1

0 otherwise.

Remark 15.2. If X1, X2, ..., Xn is a random sample from a population with
density f(x/θ), then the joint density of the sample and the parameter is
given by

u(x1, x2, ..., xn, θ) = h(θ)
n∏

i=1

f(xi/θ).

Given this joint density, the marginal density of the sample can be computed
using the formula

g(x1, x2, ..., xn) =
∫ ∞

−∞
h(θ)

n∏

i=1

f(xi/θ) dθ.
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Now using the Bayes rule, the posterior distribution of θ can be computed
as follows:

k(θ/x1, x2, ..., xn) =
h(θ)
∏n

i=1 f(xi/θ)∫∞
−∞ h(θ)

∏n
i=1 f(xi/θ) dθ

.

In Bayesian method, we use two types of loss functions.

Definition 15.7. Let X1, X2, ..., Xn be a random sample from a distribution
with density f(x/θ), where θ is the unknown parameter to be estimated. Let
θ̂ be an estimator of θ. The function

L2

(
θ̂, θ
)

=
(
θ̂ − θ
)2

is called the squared error loss. The function

L1

(
θ̂, θ
)

=
∣∣∣θ̂ − θ
∣∣∣

is called the absolute error loss.

The loss function L represents the ‘loss’ incurred when θ̂ is used in place
of the parameter θ.

Definition 15.8. Let X1, X2, ..., Xn be a random sample from a distribution
with density f(x/θ), where θ is the unknown parameter to be estimated. Let
θ̂ be an estimator of θ and let L

(
θ̂, θ
)

be a given loss function. The expected
value of this loss function with respect to the population distribution f(x/θ),
that is

RL(θ) =
∫

L
(
θ̂, θ
)

f(x/θ) dx

is called the risk.
The posterior density of the parameter θ given the sample x1, x2, ..., xn,

that is
k(θ/x1, x2, ..., xn)

contains all information about θ. In Bayesian estimation of parameter one
chooses an estimate θ̂ for θ such that

k(θ̂/x1, x2, ..., xn)

is maximum subject to a loss function. Mathematically, this is equivalent to
minimizing the integral

∫

Ω
L
(
θ̂, θ
)

k(θ/x1, x2, ..., xn) dθ
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with respect to θ̂, where Ω denotes the support of the prior density h(θ) of
the parameter θ.

Example 15.23. Suppose one observation was taken of a random variable
X which yielded the value 2. The density function for X is

f(x/θ) =






1
θ if 0 < x < θ

0 otherwise,

and prior distribution for parameter θ is

h(θ) =

{ 3
θ4 if 1 < θ < ∞

0 otherwise.
If the loss function is L(z, θ) = (z− θ)2, then what is the Bayes’ estimate for
θ ?

Answer: The prior density of the random variable θ is

h(θ) =

{ 3
θ4 if 1 < θ < ∞

0 otherwise.
The probability density function of the population is

f(x/θ) =

{ 1
θ if 0 < x < θ

0 otherwise.
Hence, the joint probability density function of the sample and the parameter
is given by

u(x, θ) = h(θ) f(x/θ)

=
3
θ4

1
θ

=

{
3 θ−5 if 0 < x < θ and 1 < θ < ∞

0 otherwise.
The marginal density of the sample is given by

g(x) =
∫ ∞

x
u(x, θ) dθ

=
∫ ∞

x
3 θ−5 dθ

=
3
4

x−4

=
3

4 x4
.
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Thus, if x = 2, then g(2) = 3
64 . The posterior density of θ when x = 2 is

given by

k(θ/x = 2) =
u(2, θ)
g(2)

=
64
3

3 θ−5

=

{
64 θ−5 if 2 < θ < ∞

0 otherwise .
Now, we find the Bayes estimator by minimizing the expression
E [L(θ, z)/x = 2]. That is

θ̂ = Arg max
z∈Ω

∫

Ω
L(θ, z) k(θ/x = 2) dθ.

Let us call this integral ψ(z). Then

ψ(z) =
∫

Ω
L(θ, z) k(θ/x = 2) dθ

=
∫ ∞

2
(z − θ)2 k(θ/x = 2) dθ

=
∫ ∞

2
(z − θ)2 64θ−5 dθ.

We want to find the value of z which yields a minimum of ψ(z). This can be
done by taking the derivative of ψ(z) and evaluating where the derivative is
zero.

d

dz
ψ(z) =

d

dz

∫ ∞

2
(z − θ)2 64θ−5 dθ

= 2
∫ ∞

2
(z − θ) 64θ−5 dθ

= 2
∫ ∞

2
z 64θ−5 dθ − 2

∫ ∞

2
θ 64θ−5 dθ

= 2 z − 16
3

.

Setting this derivative of ψ(z) to zero and solving for z, we get

2z − 16
3

= 0

⇒ z =
8
3
.

Since d2ψ(z)
dz2 = 2, the function ψ(z) has a minimum at z = 8

3 . Hence, the
Bayes’ estimate of θ is 8

3 .
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In Example 15.23, we have found the Bayes’ estimate of θ by di-
rectly minimizing the

∫
Ω L
(
θ̂, θ
)

k(θ/x1, x2, ..., xn) dθ with respect to θ̂.
The next result is very useful while finding the Bayes’ estimate using
a quadratic loss function. Notice that if L(θ̂, θ) = (θ − θ̂)2, then
∫

Ω L
(
θ̂, θ
)

k(θ/x1, x2, ..., xn) dθ is E
(
(θ − θ̂)2 /x1, x2, ..., xn

)
. The follow-

ing theorem is based on the fact that the function φ defined by φ(c) =
E
[
(X − c)2

]
attains minimum if c = E[X].

Theorem 15.3. Let X1, X2, ..., Xn be a random sample from a distribution
with density f(x/θ), where θ is the unknown parameter to be estimated. If
the loss function is squared error, then the Bayes’ estimator θ̂ of parameter
θ is given by

θ̂ = E(θ/x1, x2, ..., xn),

where the expectation is taken with respect to density k(θ/x1, x2, ..., xn).

Now we give several examples to illustrate the use of this theorem.

Example 15.24. Suppose the prior distribution of θ is uniform over the
interval (0, 1). Given θ, the population X is uniform over the interval (0, θ).
If the squared error loss function is used, find the Bayes’ estimator of θ based
on a sample of size one.

Answer: The prior density of θ is given by

h(θ) =

{ 1 if 0 < θ < 1

0 otherwise .

The density of population is given by

f(x/θ) =

{ 1
θ if 0 < x < θ

0 otherwise.

The joint density of the sample and the parameter is given by

u(x, θ) = h(θ) f(x/θ)

= 1
(

1
θ

)

=

{ 1
θ if 0 < x < θ < 1

0 otherwise .
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The marginal density of the sample is

g(x) =
∫ 1

x
u(x, θ) dθ

=
∫ 1

x

1
θ

dθ

=
{− lnx if 0 < x < 1

0 otherwise.

The conditional density of θ given the sample is

k(θ/x) =
u(x, θ)
g(x)

=

{− 1
θ ln x if 0 < x < θ < 1

0 elsewhere .

Since the loss function is quadratic error, therefore the Bayes’ estimator of θ
is

θ̂ = E[θ/x]

=
∫ 1

x
θ k(θ/x) dθ

=
∫ 1

x
θ
−1
θ lnx

dθ

= − 1
lnx

∫ 1

x
dθ

=
x− 1
lnx

.

Thus, the Bayes’ estimator of θ based on one observation X is

θ̂ =
X − 1
lnX

.

Example 15.25. Given θ, the random variable X has a binomial distribution
with n = 2 and probability of success θ. If the prior density of θ is

h(θ) =






k if 1
2 < θ < 1

0 otherwise,

what is the Bayes’ estimate of θ for a squared error loss if X = 1 ?

Answer: Note that θ is uniform on the interval
(

1
2 , 1
)
, hence k = 2. There-

fore, the prior density of θ is

h(θ) =

{
2 if 1

2 < θ < 1

0 otherwise.
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The population density is given by

f(x/θ) =
(

n

x

)
θx (1− θ)n−x =

(
2
x

)
θx (1− θ)2−x, x = 0, 1, 2.

The joint density of the sample and the parameter θ is

u(x, θ) = h(θ) f(x/θ)

= 2
(

2
x

)
θx (1− θ)2−x

where 1
2 < θ < 1 and x = 0, 1, 2. The marginal density of the sample is given

by

g(x) =
∫ 1

1
2

u(x, θ) dθ.

This integral is easy to evaluate if we substitute X = 1 now. Hence

g(1) =
∫ 1

1
2

2
(

2
1

)
θ (1− θ) dθ

=
∫ 1

1
2

(
4θ − 4θ2

)
dθ

= 4
[
θ2

2
− θ

3

3

]1

1
2

=
2
3
[
3θ2 − 2θ3

]1
1
2

=
2
3

[
(3− 2)−

(
3
4
− 2

8

)]

=
1
3
.

Therefore, the posterior density of θ given x = 1, is

k(θ/x = 1) =
u(1, θ)
g(1)

= 12 (θ − θ2),

where 1
2 < θ < 1. Since the loss function is quadratic error, therefore the
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Bayes’ estimate of θ is

θ̂ = E[θ/x = 1]

=
∫ 1

1
2

θ k(θ/x = 1) dθ

=
∫ 1

1
2

12 θ (θ − θ2) dθ

=
[
4 θ3 − 3 θ4

]1
1
2

= 1− 5
16

=
11
16

.

Hence, based on the sample of size one with X = 1, the Bayes’ estimate of θ
is 11

16 , that is

θ̂ =
11
16

.

The following theorem help us to evaluate the Bayes estimate of a sample
if the loss function is absolute error loss. This theorem is based the fact that
a function φ(c) = E [ |X − c| ] is minimum if c is the median of X.

Theorem 15.4. Let X1, X2, ..., Xn be a random sample from a distribution
with density f(x/θ), where θ is the unknown parameter to be estimated. If
the loss function is absolute error, then the Bayes estimator θ̂ of the param-
eter θ is given by

θ̂ = median of k(θ/x1, x2, ..., xn)

where k(θ/x1, x2, ..., xn) is the posterior distribution of θ.

The followings are some examples to illustrate the above theorem.

Example 15.26. Given θ, the random variable X has a binomial distribution
with n = 3 and probability of success θ. If the prior density of θ is

h(θ) =






k if 1
2 < θ < 1

0 otherwise,

what is the Bayes’ estimate of θ for an absolute difference error loss if the
sample consists of one observation x = 3?
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Answer: Since, the prior density of θ is

h(θ) =






2 if 1
2 < θ < 1

0 otherwise ,

and the population density is

f(x/θ) =
(

3
x

)
θx(1− θ)3−x,

the joint density of the sample and the parameter is given by

u(3, θ) = h(θ) f(3/θ) = 2 θ3,

where 1
2 < θ < 1. The marginal density of the sample (at x = 3) is given by

g(3) =
∫ 1

1
2

u(3, θ) dθ

=
∫ 1

1
2

2 θ3 dθ

=
[
θ4

2

]1

1
2

=
15
32

.

Therefore, the conditional density of θ given X = 3 is

k(θ/x = 3) =
u(3, θ)
g(3)

=

{ 64
15 θ

3 if 1
2 < θ < 1

0 elsewhere.

Since, the loss function is absolute error, the Bayes’ estimator is the median
of the probability density function k(θ/x = 3). That is

1
2

=
∫ θ̂

1
2

64
15
θ3 dθ

=
64
60
[
θ4
]θ̂

1
2

=
64
60

[(
θ̂
)4
− 1

16

]
.
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Solving the above equation for θ̂, we get

θ̂ = 4

√
17
32

= 0.8537.

Example 15.27. Suppose the prior distribution of θ is uniform over the
interval (2, 5). Given θ, X is uniform over the interval (0, θ). What is the
Bayes’ estimator of θ for absolute error loss if X = 1 ?

Answer: Since, the prior density of θ is

h(θ) =






1
3 if 2 < θ < 5

0 otherwise ,

and the population density is

f(x/θ) =






1
θ if 0 < x < θ

0 elsewhere,

the joint density of the sample and the parameter is given by

u(x, θ) = h(θ) f(x/θ) =
1
3θ

,

where 2 < θ < 5 and 0 < x < θ. The marginal density of the sample (at
x = 1) is given by

g(1) =
∫ 5

1
u(1, θ) dθ

=
∫ 2

1
u(1, θ) dθ +

∫ 5

2
u(1, θ) dθ

=
∫ 5

2

1
3θ

dθ

=
1
3

ln
(

5
2

)
.

Therefore, the conditional density of θ given the sample x = 1, is

k(θ/x = 1) =
u(1, θ)
g(1)

=
1

θ ln
(

5
2

) .
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Since, the loss function is absolute error, the Bayes estimate of θ is the median
of k(θ/x = 1). Hence

1
2

=
∫ θ̂

2

1
θ ln
(

5
2

) dθ

=
1

ln
(

5
2

) ln

(
θ̂

2

)
.

Solving for θ̂, we get
θ̂ =

√
10 = 3.16.

Example 15.28. What is the basic principle of Bayesian estimation?

Answer: The basic principle behind the Bayesian estimation method con-
sists of choosing a value of the parameter θ for which the observed data have
as high a posterior probability k(θ/x1, x2, ..., xn) of θ as possible subject to
a loss function.

15.4. Review Exercises

1. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x; θ) =






1
2θ if −θ < x < θ

0 otherwise,

where 0 < θ is a parameter. Using the moment method find an estimator for
the parameter θ.

2. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x; θ) =






(θ + 1) x−θ−2 if 1 < x <∞

0 otherwise,

where 0 < θ is a parameter. Using the moment method find an estimator for
the parameter θ.

3. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x; θ) =






θ2 x e−θ x if 0 < x <∞

0 otherwise,
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where 0 < θ is a parameter. Using the moment method find an estimator for
the parameter θ.

4. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x; θ) =






θ xθ−1 if 0 < x < 1

0 otherwise,

where 0 < θ is a parameter. Using the maximum likelihood method find an
estimator for the parameter θ.

5. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x; θ) =






(θ + 1) x−θ−2 if 1 < x <∞

0 otherwise,

where 0 < θ is a parameter. Using the maximum likelihood method find an
estimator for the parameter θ.

6. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x; θ) =






θ2 x e−θ x if 0 < x <∞

0 otherwise,

where 0 < θ is a parameter. Using the maximum likelihood method find an
estimator for the parameter θ.

7. Let X1, X2, X3, X4 be a random sample from a distribution with density
function

f(x;β) =






1
β e

−(x−4)
β for x > 4

0 otherwise,
where β > 0. If the data from this random sample are 8.2, 9.1, 10.6 and 4.9,
respectively, what is the maximum likelihood estimate of β?

8. Given θ, the random variable X has a binomial distribution with n = 2
and probability of success θ. If the prior density of θ is

h(θ) =






k if 1
2 < θ < 1

0 otherwise,
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what is the Bayes’ estimate of θ for a squared error loss if the sample consists
of x1 = 1 and x2 = 2.

9. Suppose two observations were taken of a random variable X which yielded
the values 2 and 3. The density function for X is

f(x/θ) =






1
θ if 0 < x < θ

0 otherwise,

and prior distribution for the parameter θ is

h(θ) =

{
3 θ−4 if θ > 1

0 otherwise.

If the loss function is quadratic, then what is the Bayes’ estimate for θ?

10. The Pareto distribution is often used in study of incomes and has the
cumulative density function

F (x;α, θ) =





1−
(
α
x

)θ if α ≤ x

0 otherwise,

where 0 < α <∞ and 1 < θ < ∞ are parameters. Find the maximum likeli-
hood estimates of α and θ based on a sample of size 5 for value 3, 5, 2, 7, 8.

11. The Pareto distribution is often used in study of incomes and has the
cumulative density function

F (x;α, θ) =





1−
(
α
x

)θ if α ≤ x

0 otherwise,

where 0 < α < ∞ and 1 < θ < ∞ are parameters. Using moment methods
find estimates of α and θ based on a sample of size 5 for value 3, 5, 2, 7, 8.

12. Suppose one observation was taken of a random variable X which yielded
the value 2. The density function for X is

f(x/µ) =
1√
2π

e−
1
2 (x−µ)2 −∞ < x <∞,

and prior distribution of µ is

h(µ) =
1√
2π

e−
1
2 µ2

−∞ < µ <∞.
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If the loss function is quadratic, then what is the Bayes’ estimate for µ?

13. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
probability density

f(x) =






1
θ if 2θ ≤ x ≤ 3θ

0 otherwise,

where θ > 0. What is the maximum likelihood estimator of θ?

14. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
probability density

f(x) =






1− θ2 if 0 ≤ x ≤ 1
1−θ2

0 otherwise,

where θ > 0. What is the maximum likelihood estimator of θ?

15. Given θ, the random variable X has a binomial distribution with n = 3
and probability of success θ. If the prior density of θ is

h(θ) =






k if 1
2 < θ < 1

0 otherwise,

what is the Bayes’ estimate of θ for a absolute difference error loss if the
sample consists of one observation x = 1?

16. Suppose the random variable X has the cumulative density function
F (x). Show that the expected value of the random variable (X − c)2 is
minimum if c equals the expected value of X.

17. Suppose the continuous random variable X has the cumulative density
function F (x). Show that the expected value of the random variable |X − c|
is minimum if c equals the median of X (that is, F (c) = 0.5).

18. Eight independent trials are conducted of a given system with the follow-
ing results: S, F, S, F, S, S, S, S where S denotes the success and F denotes
the failure. What is the maximum likelihood estimate of the probability of
successful operation p ?

19. What is the maximum likelihood estimate of β if the 5 values 4
5 , 2

3 , 1,
3
2 , 5

4 were drawn from the population for which f(x;β) = 1
2 (1 + β)5

(
x
2

)β ?
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20. If a sample of five values of X is taken from the population for which
f(x; t) = 2(t− 1)tx, what is the maximum likelihood estimator of t ?

21. A sample of size n is drawn from a gamma distribution

f(x;β) =






x3 e
− x
β

6β4 if 0 < x <∞

0 otherwise.

What is the maximum likelihood estimator of β ?

22. The probability density function of the random variable X is defined by

f(x;λ) =

{
1− 2

3λ+ λ
√

x if 0 ≤ x ≤ 1

0 otherwise.

What is the maximum likelihood estimate of the parameter λ based on two
independent observations x1 = 1

4 and x2 = 9
16 ?

23. Let X1, X2, ..., Xn be a random sample from a distribution with density
function f(x;σ) = σ

2 e−σ|x−µ|. What is the maximum likelihood estimator of
σ ?

24. Suppose X1, X2, ... are independent random variables, each with proba-
bility of success p and probability of failure 1 − p, where 0 ≤ p ≤ 1. Let N

be the number of observation needed to obtain the first success. What is the
maximum likelihood estimator of p in term of N ?

25. Let X1, X2, X3 and X4 be a random sample from the discrete distribution
X such that

P (X = x) =






θ2x e−θ2

x! for x = 0, 1, 2, ...,∞

0 otherwise,

where θ > 0. If the data are 17, 10, 32, 5, what is the maximum likelihood
estimate of θ ?

26. Let X1, X2, ..., Xn be a random sample of size n from a population with
a probability density function

f(x;α, λ) =






λα

Γ(α) xα−1e−λx if 0 < x <∞

0 otherwise,
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where α and λ are parameters. Using the moment method find the estimators
for the parameters α and λ.

27. Let X1, X2, ..., Xn be a random sample of size n from a population
distribution with the probability density function

f(x; p) =
(

10
x

)
px (1− p)10−x

for x = 0, 1, ..., 10, where p is a parameter. Find the Fisher information in
the sample about the parameter p.

28. Let X1, X2, ..., Xn be a random sample of size n from a population
distribution with the probability density function

f(x; θ) =






θ2 x e−θ x if 0 < x <∞

0 otherwise,

where 0 < θ is a parameter. Find the Fisher information in the sample about
the parameter θ.

29. Let X1, X2, ..., Xn be a random sample of size n from a population
distribution with the probability density function

f(x; µ, σ2) =






1
xσ

√
2π

e
− 1

2

(
ln(x)−µ

σ

)2
, if 0 < x <∞

0 otherwise ,

where −∞ < µ < ∞ and 0 < σ2 < ∞ are unknown parameters. Find the
Fisher information matrix in the sample about the parameters µ and σ2.

30. Let X1, X2, ..., Xn be a random sample of size n from a population
distribution with the probability density function

f(x; µ, λ) =






√
λ
2π x− 3

2 e
−λ(x−µ)2

2µ2x , if 0 < x <∞

0 otherwise ,

where 0 < µ <∞ and 0 < λ < ∞ are unknown parameters. Find the Fisher
information matrix in the sample about the parameters µ and λ.

31. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x) =






1
Γ(α) θα xα−1 e−

x
θ if 0 < x <∞

0 otherwise,
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where α > 0 and θ > 0 are parameters. Using the moment method find
estimators for parameters α and β.

32. Let X1, X2, ..., Xn be a random sample of sizen from a distribution with
a probability density function

f(x; θ) =
1

π [1 + (x− θ)2] , −∞ < x <∞,

where 0 < θ is a parameter. Using the maximum likelihood method find an
estimator for the parameter θ.

33. Let X1, X2, ..., Xn be a random sample of sizen from a distribution with
a probability density function

f(x; θ) =
1
2

e−|x−θ|, −∞ < x <∞,

where 0 < θ is a parameter. Using the maximum likelihood method find an
estimator for the parameter θ.

34. Let X1, X2, ..., Xn be a random sample of size n from a population
distribution with the probability density function

f(x;λ) =






λx e−λ

x! if x = 0, 1, ...,∞

0 otherwise,

where λ > 0 is an unknown parameter. Find the Fisher information matrix
in the sample about the parameter λ.

35. Let X1, X2, ..., Xn be a random sample of size n from a population
distribution with the probability density function

f(x; p) =






(1− p)x−1p if x = 1, ...,∞

0 otherwise,

where 0 < p < 1 is an unknown parameter. Find the Fisher information
matrix in the sample about the parameter p.
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Chapter 16

CRITERIA
FOR

EVALUATING
THE GOODNESS OF

ESTIMATORS

We have seen in Chapter 15 that, in general, different parameter estima-
tion methods yield different estimators. For example, if X ∼ UNIF (0, θ) and
X1, X2, ..., Xn is a random sample from the population X, then the estimator
of θ obtained by moment method is

θ̂MM = 2X

where as the estimator obtained by the maximum likelihood method is

θ̂ML = X(n)

where X and X(n) are the sample average and the nth order statistic, respec-
tively. Now the question arises: which of the two estimators is better? Thus,
we need some criteria to evaluate the goodness of an estimator. Some well
known criteria for evaluating the goodness of an estimator are: (1) Unbiased-
ness, (2) Efficiency and Relative Efficiency, (3) Uniform Minimum Variance
Unbiasedness, (4) Sufficiency, and (5) Consistency.

In this chapter, we shall examine only the first four criteria in details.
The concepts of unbiasedness, efficiency and sufficiency were introduced by
Sir Ronald Fisher.
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16.1. The Unbiased Estimator

Let X1, X2, ..., Xn be a random sample of size n from a population with
probability density function f(x; θ). An estimator θ̂ of θ is a function of
the random variables X1, X2, ..., Xn which is free of the parameter θ. An
estimate is a realized value of an estimator that is obtained when a sample
is actually taken.

Definition 16.1. An estimator θ̂ of θ is said to be an unbiased estimator of
θ if and only if

E
(
θ̂
)

= θ.

If θ̂ is not unbiased, then it is called a biased estimator of θ.

An estimator of a parameter may not equal to the actual value of the pa-
rameter for every realization of the sample X1, X2, ..., Xn, but if it is unbiased
then on an average it will equal to the parameter.

Example 16.1. Let X1, X2, ..., Xn be a random sample from a normal
population with mean µ and variance σ2 > 0. Is the sample mean X an
unbiased estimator of the parameter µ ?

Answer: Since, each Xi ∼ N(µ, σ2), we have

X ∼ N

(
µ,
σ2

n

)
.

That is, the sample mean is normal with mean µ and variance σ2

n . Thus

E
(
X
)

= µ.

Therefore, the sample mean X is an unbiased estimator of µ.

Example 16.2. Let X1, X2, ..., Xn be a random sample from a normal pop-
ulation with mean µ and variance σ2 > 0. What is the maximum likelihood
estimator of σ2 ? Is this maximum likelihood estimator an unbiased estimator
of the parameter σ2 ?

Answer: In Example 15.13, we have shown that the maximum likelihood
estimator of σ2 is

σ̂2 =
1
n

n∑

i=1

(
Xi −X

)2
.
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Now, we examine the unbiasedness of this estimator

E
[
σ̂2
]

= E

[
1
n

n∑

i=1

(
Xi −X

)2
]

= E

[
n− 1

n

1
n− 1

n∑

i=1

(
Xi −X

)2
]

=
n− 1

n
E

[
1

n− 1

n∑

i=1

(
Xi −X

)2
]

=
n− 1

n
E
[
S2
]

=
σ2

n
E

[
n− 1
σ2

S2

]
(since

n− 1
σ2

S2 ∼ χ2(n− 1))

=
σ2

n
E
[
χ2(n− 1)

]

=
σ2

n
(n− 1)

=
n− 1

n
σ2

+= σ2.

Therefore, the maximum likelihood estimator of σ2 is a biased estimator.

Next, in the following example, we show that the sample variance S2

given by the expression

S2 =
1

n− 1

n∑

i=1

(
Xi −X

)2

is an unbiased estimator of the population variance σ2 irrespective of the
population distribution.

Example 16.3. Let X1, X2, ..., Xn be a random sample from a population
with mean µ and variance σ2 > 0. Is the sample variance S2 an unbiased
estimator of the population variance σ2 ?

Answer: Note that the distribution of the population is not given. However,
we are given E(Xi) = µ and E[(Xi − µ)2] = σ2. In order to find E

(
S2
)
,

we need E
(
X
)

and E
(
X

2
)
. Thus we proceed to find these two expected
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values. Consider

E
(
X
)

= E

(
X1 + X2 + · · · + Xn

n

)

=
1
n

n∑

i=1

E(Xi) =
1
n

n∑

i=1

µ = µ

Similarly,

V ar
(
X
)

= V ar

(
X1 + X2 + · · · + Xn

n

)

=
1
n2

n∑

i=1

V ar(Xi) =
1
n2

n∑

i=1

σ2 =
σ2

n
.

Therefore

E
(

X
2
)

= V ar
(
X
)

+ E
(
X
)2 =

σ2

n
+ µ2.

Consider

E
(
S2
)

= E

[
1

n− 1

n∑

i=1

(
Xi −X

)2
]

=
1

n− 1
E

[
n∑

i=1

(
X2

i − 2XXi + X
2
)]

=
1

n− 1
E

[
n∑

i=1

X2
i − n X

2

]

=
1

n− 1

{
n∑

i=1

E
[
X2

i

]
− E
[
n X

2
]}

=
1

n− 1

[
n(σ2 + µ2)− n

(
µ2 +

σ2

n

)]

=
1

n− 1
[
(n− 1)σ2

]

= σ2.

Therefore, the sample variance S2 is an unbiased estimator of the population
variance σ2.

Example 16.4. Let X be a random variable with mean 2. Let θ̂1 and
θ̂2 be unbiased estimators of the second and third moments, respectively, of
X about the origin. Find an unbiased estimator of the third moment of X

about its mean in terms of θ̂1 and θ̂2 .
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Answer: Since, θ̂1 and θ̂2 are the unbiased estimators of the second and
third moments of X about origin, we get

E
(
θ̂1
)

= E(X2) and E
(
θ̂2
)

= E
(
X3
)
.

The unbiased estimator of the third moment of X about its mean is

E
[
(X − 2)3

]
= E
[
X3 − 6X2 + 12X − 8

]

= E
[
X3
]
− 6E
[
X2
]
+ 12E [X]− 8

= θ̂2 − 6θ̂1 + 24− 8

= θ̂2 − 6θ̂1 + 16.

Thus, the unbiased estimator of the third moment of X about its mean is
θ̂2 − 6θ̂1 + 16.

Example 16.5. Let X1, X2, ..., X5 be a sample of size 5 from the uniform
distribution on the interval (0, θ), where θ is unknown. Let the estimator of
θ be k Xmax, where k is some constant and Xmax is the largest observation.
In order k Xmax to be an unbiased estimator, what should be the value of
the constant k ?

Answer: The probability density function of Xmax is given by

g(x) =
5!

4! 0!
[F (x)]4 f(x)

= 5
(x
θ

)4 1
θ

=
5
θ5

x4.

If k Xmax is an unbiased estimator of θ, then

θ = E (k Xmax)

= k E (Xmax)

= k

∫ θ

0
x g(x) dx

= k

∫ θ

0

5
θ5

x5 dx

=
5
6

k θ.

Hence,

k =
6
5
.
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Example 16.6. Let X1, X2, ..., Xn be a sample of size n from a distribution
with unknown mean −∞ < µ < ∞, and unknown variance σ2 > 0. Show
that the statistic X and Y = X1+2X2+···+nXn

n (n+1)
2

are both unbiased estimators

of µ. Further, show that V ar
(
X
)

< V ar(Y ).

Answer: First, we show that X is an unbiased estimator of µ

E
(
X
)

= E

(
X1 + X2 + · · · + Xn

n

)

=
1
n

n∑

i=1

E (Xi)

=
1
n

n∑

i=1

µ = µ.

Hence, the sample mean X is an unbiased estimator of the population mean
irrespective of the distribution of X. Next, we show that Y is also an unbiased
estimator of µ.

E (Y ) = E

(
X1 + 2X2 + · · · + nXn

n (n+1)
2

)

=
2

n (n + 1)

n∑

i=1

i E (Xi)

=
2

n (n + 1)

n∑

i=1

i µ

=
2

n (n + 1)
µ

n (n + 1)
2

= µ.

Hence, X and Y are both unbiased estimator of the population mean irre-
spective of the distribution of the population. The variance of X is given
by

V ar
[
X
]

= V ar

[
X1 + X2 + · · · + Xn

n

]

=
1
n2

V ar [X1 + X2 + · · · + Xn]

=
1
n2

n∑

i=1

V ar [Xi]

=
σ2

n
.
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Similarly, the variance of Y can be calculated as follows:

V ar [Y ] = V ar

[
X1 + 2X2 + · · · + nXn

n (n+1)
2

]

=
4

n2 (n + 1)2
V ar [1 X1 + 2 X2 + · · · + n Xn]

=
4

n2 (n + 1)2

n∑

i=1

V ar [i Xi]

=
4

n2 (n + 1)2

n∑

i=1

i2 V ar [Xi]

=
4

n2 (n + 1)2
σ2

n∑

i=1

i2

= σ2 4
n2 (n + 1)2

n (n + 1) (2n + 1)
6

=
2
3

2n + 1
(n + 1)

σ2

n

=
2
3

2n + 1
(n + 1)

V ar
[
X
]
.

Since 2
3

2n+1
(n+1) > 1 for n ≥ 2, we see that V ar

[
X
]

< V ar[ Y ]. This shows
that although the estimators X and Y are both unbiased estimator of µ, yet
the variance of the sample mean X is smaller than the variance of Y .

In statistics, between two unbiased estimators one prefers the estimator
which has the minimum variance. This leads to our next topic. However,
before we move to the next topic we complete this section with some known
disadvantages with the notion of unbiasedness. The first disadvantage is that
an unbiased estimator for a parameter may not exist. The second disadvan-
tage is that the property of unbiasedness is not invariant under functional
transformation, that is, if θ̂ is an unbiased estimator of θ and g is a function,
then g(θ̂) may not be an unbiased estimator of g(θ).

16.2. The Relatively Efficient Estimator

We have seen that in Example 16.6 that the sample mean

X =
X1 + X2 + · · · + Xn

n

and the statistic
Y =

X1 + 2X2 + · · · + nXn

1 + 2 + · · · + n



m m

Criteria for Evaluating the Goodness of Estimators 456

are both unbiased estimators of the population mean. However, we also seen
that

V ar
(
X
)

< V ar(Y ).

The following figure graphically illustrates the shape of the distributions of
both the unbiased estimators.

If an unbiased estimator has a smaller variance or dispersion, then it has
a greater chance of being close to true parameter θ. Therefore when two
estimators of θ are both unbiased, then one should pick the one with the
smaller variance.

Definition 16.2. Let θ̂1 and θ̂2 be two unbiased estimators of θ. The
estimator θ̂1 is said to be more efficient than θ̂2 if

V ar
(
θ̂1
)

< V ar
(
θ̂2
)

.

The ratio η given by

η
(
θ̂1, θ̂2
)

=
V ar
(
θ̂2
)

V ar
(
θ̂1
)

is called the relative efficiency of θ̂1 with respect to θ̂2.

Example 16.7. Let X1, X2, X3 be a random sample of size 3 from a pop-
ulation with mean µ and variance σ2 > 0. If the statistics X and Y given
by

Y =
X1 + 2X2 + 3X3

6

are two unbiased estimators of the population mean µ, then which one is
more efficient?
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Answer: Since E (Xi) = µ and V ar (Xi) = σ2, we get

E
(
X
)

= E

(
X1 + X2 + X3

3

)

=
1
3

(E (X1) + E (X2) + E (X3))

=
1
3

3µ

= µ

and

E (Y ) = E

(
X1 + 2X2 + 3X3

6

)

=
1
6

(E (X1) + 2E (X2) + 3E (X3))

=
1
6

6µ

= µ.

Therefore both X and Y are unbiased. Next we determine the variance of
both the estimators. The variances of these estimators are given by

V ar
(
X
)

= V ar

(
X1 + X2 + X3

3

)

=
1
9

[V ar (X1) + V ar (X2) + V ar (X3)]

=
1
9

3σ2

=
12
36
σ2

and

V ar (Y ) = V ar

(
X1 + 2X2 + 3X3

6

)

=
1
36

[V ar (X1) + 4V ar (X2) + 9V ar (X3)]

=
1
36

14σ2

=
14
36
σ2.

Therefore
12
36
σ2 = V ar

(
X
)

< V ar (Y ) =
14
36
σ2.



Criteria for Evaluating the Goodness of Estimators 458

Hence, X is more efficient than the estimator Y . Further, the relative effi-
ciency of X with respect to Y is given by

η
(
X, Y
)

=
14
12

=
7
6
.

Example 16.8. Let X1, X2, ..., Xn be a random sample of size n from a
population with density

f(x; θ) =






1
θ e−

x
θ if 0 ≤ x <∞

0 otherwise,

where θ > 0 is a parameter. Are the estimators X1 and X unbiased? Given,
X1 and X, which one is more efficient estimator of θ ?

Answer: Since the population X is exponential with parameter θ, that is
X ∼ EXP (θ), the mean and variance of it are given by

E(X) = θ and V ar(X) = θ2.

Since X1, X2, ..., Xn is a random sample from X, we see that the statistic
X1 ∼ EXP (θ). Hence, the expected value of X1 is θ and thus it is an
unbiased estimator of the parameter θ. Also, the sample mean is an unbiased
estimator of θ since

E
(
X
)

=
1
n

n∑

i=1

E (Xi)

=
1
n

nθ

= θ.

Next, we compute the variances of the unbiased estimators X1 and X. It is
easy to see that

V ar (X1) = θ2

and
V ar
(
X
)

= V ar

(
X1 + X2 + · · · + Xn

n

)

=
1
n2

n∑

i=1

V ar (Xi)

=
1
n2

nθ2

=
θ2

n
.
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Hence
θ2

n
= V ar

(
X
)

< V ar (X1) = θ2.

Thus X is more efficient than X1 and the relative efficiency of X with respect
to X1 is

η(X, X1) =
θ2

θ2

n

= n.

Example 16.9. Let X1, X2, X3 be a random sample of size 3 from a popu-
lation with density

f(x;λ) =






λx e−λ

x! if x = 0, 1, 2, ...,∞

0 otherwise,

where λ is a parameter. Are the estimators given by

λ̂1 =
1
4

(X1 + 2X2 + X3) and λ̂2 =
1
9

(4X1 + 3X2 + 2X3)

unbiased? Given, λ̂1 and λ̂2, which one is more efficient estimator of λ ?
Find an unbiased estimator of λ whose variance is smaller than the variances
of λ̂1 and λ̂2.

Answer: Since each Xi ∼ POI(λ), we get

E (Xi) = λ and V ar (Xi) = λ.

It is easy to see that

E
(
λ̂1

)
=

1
4

(E (X1) + 2E (X2) + E (X3))

=
1
4

4λ

= λ,

and
E
(
λ̂2

)
=

1
9

(4E (X1) + 3E (X2) + 2E (X3))

=
1
9

9λ

= λ.
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Thus, both λ̂1 and λ̂2 are unbiased estimators of λ. Now we compute their
variances to find out which one is more efficient. It is easy to note that

V ar
(
λ̂1

)
=

1
16

(V ar (X1) + 4V ar (X2) + V ar (X3))

=
1
16

6λ

=
6
16
λ

=
486
1296

λ,

and
V ar
(
λ̂2

)
=

1
81

(16V ar (X1) + 9V ar (X2) + 4V ar (X3))

=
1
81

29λ

=
29
81
λ

=
464
1296

λ,

Since,
V ar
(
λ̂2

)
< V ar

(
λ̂1

)
,

the estimator λ̂2 is efficient than the estimator λ̂1. We have seen in section
16.1 that the sample mean is always an unbiased estimator of the population
mean irrespective of the population distribution. The variance of the sample
mean is always equals to 1

n times the population variance, where n denotes
the sample size. Hence, we get

V ar
(
X
)

=
λ

3
=

432
1296

λ.

Therefore, we get

V ar
(
X
)

< V ar
(
λ̂2

)
< V ar

(
λ̂1

)
.

Thus, the sample mean has even smaller variance than the two unbiased
estimators given in this example.

In view of this example, now we have encountered a new problem. That
is how to find an unbiased estimator which has the smallest variance among
all unbiased estimators of a given parameter. We resolve this issue in the
next section.
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16.3. The Uniform Minimum Variance Unbiased Estimator

Let X1, X2, ..., Xn be a random sample of size n from a population with
probability density function f(x; θ). Recall that an estimator θ̂ of θ is a
function of the random variables X1, X2, ..., Xn which does depend on θ.

Definition 16.3. An unbiased estimator θ̂ of θ is said to be a uniform
minimum variance unbiased estimator of θ if and only if

V ar
(
θ̂
)
≤ V ar

(
T̂
)

for any unbiased estimator T̂ of θ.

If an estimator θ̂ is unbiased then the mean of this estimator is equal to
the parameter θ, that is

E
(
θ̂
)

= θ

and the variance of θ̂ is

V ar
(
θ̂
)

= E

[(
θ̂ − E
(
θ̂
))2]

= E

[(
θ̂ − θ
)2]

.

This variance, if exists, is a function of the unbiased estimator θ̂ and it has a
minimum in the class of all unbiased estimators of θ. Therefore we have an
alternative definition of the uniform minimum variance unbiased estimator.

Definition 16.4. An unbiased estimator θ̂ of θ is said to be a uniform
minimum variance unbiased estimator of θ if it minimizes the variance
E

[(
θ̂ − θ
)2]

.

Example 16.10. Let θ̂1 and θ̂2 be unbiased estimators of θ. Suppose
V ar
(
θ̂1
)

= 1, V ar
(
θ̂2
)

= 2 and Cov
(
θ̂1, θ̂2
)

= 1
2 . What are the val-

ues of c1 and c2 for which c1θ̂1 + c2θ̂2 is an unbiased estimator of θ with
minimum variance among unbiased estimators of this type?

Answer: We want c1θ̂1 +c2θ̂2 to be a minimum variance unbiased estimator
of θ. Then

E
[
c1θ̂1 + c2θ̂2

]
= θ

⇒ c1 E
[
θ̂1
]

+ c2 E
[
θ̂2
]

= θ

⇒ c1 θ + c2 θ = θ

⇒ c1 + c2 = 1

⇒ c2 = 1− c1.
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Therefore

V ar
[
c1θ̂1 + c2θ̂2

]
= c2

1 V ar
[
θ̂1
]

+ c2
2 V ar
[
θ̂2
]

+ 2 c1 c2 Cov
(
θ̂1, θ̂1
)

= c2
1 + 2c2

2 + c1c2

= c2
1 + 2(1− c1)2 + c1(1− c1)

= 2(1− c1)2 + c1

= 2 + 2c2
1 − 3c1.

Hence, the variance V ar
[
c1θ̂1 + c2θ̂2

]
is a function of c1. Let us denote this

function by φ(c1), that is

φ(c1) := V ar
[
c1θ̂1 + c2θ̂2

]
= 2 + 2c2

1 − 3c1.

Taking the derivative of φ(c1) with respect to c1, we get

d

dc1
φ(c1) = 4c1 − 3.

Setting this derivative to zero and solving for c1, we obtain

4c1 − 3 = 0 ⇒ c1 =
3
4
.

Therefore
c2 = 1− c1 = 1− 3

4
=

1
4
.

In Example 16.10, we saw that if θ̂1 and θ̂2 are any two unbiased esti-
mators of θ, then c θ̂1 + (1− c) θ̂2 is also an unbiased estimator of θ for any
c ∈ IR. Hence given two estimators θ̂1 and θ̂2,

C =
{
θ̂ | θ̂ = c θ̂1 + (1− c) θ̂2, c ∈ IR

}

forms an uncountable class of unbiased estimators of θ. When the variances
of θ̂1 and θ̂2 are known along with the their covariance, then in Example
16.10 we were able to determine the minimum variance unbiased estimator
in the class C. If the variances of the estimators θ̂1 and θ̂2 are not known,
then it is very difficult to find the minimum variance estimator even in the
class of estimators C. Notice that C is a subset of the class of all unbiased
estimators and finding a minimum variance unbiased estimator in this class
is a difficult task.
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One way to find a uniform minimum variance unbiased estimator for a
parameter is to use the Cramér-Rao lower bound or the Fisher information
inequality.

Theorem 16.1. Let X1, X2, ..., Xn be a random sample of size n from a
population X with probability density f(x; θ), where θ is a scalar parameter.
Let θ̂ be any unbiased estimator of θ. Suppose the likelihood function L(θ)
is a differentiable function of θ and satisfies

d

dθ

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(x1, ..., xn) L(θ) dx1 · · · dxn

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
h(x1, ..., xn)

d

dθ
L(θ) dx1 · · · dxn

(1)

for any h(x1, ..., xn) with E(h(X1, ..., Xn)) < ∞. Then

V ar
(
θ̂
)
≥ 1

E

[(
∂ ln L(θ)

∂θ

)2] . (CR1)

Proof: Since L(θ) is the joint probability density function of the sample
X1, X2, ..., Xn, ∫ ∞

−∞
· · ·
∫ ∞

−∞
L(θ) dx1 · · · dxn = 1. (2)

Differentiating (2) with respect to θ we have

d

dθ

∫ ∞

−∞
· · ·
∫ ∞

−∞
L(θ) dx1 · · · dxn = 0

and use of (1) with h(x1, ..., xn) = 1 yields

∫ ∞

−∞
· · ·
∫ ∞

−∞

d

dθ
L(θ) dx1 · · · dxn = 0. (3)

Rewriting (3) as

∫ ∞

−∞
· · ·
∫ ∞

−∞

dL(θ)
dθ

1
L(θ)

L(θ) dx1 · · · dxn = 0

we see that ∫ ∞

−∞
· · ·
∫ ∞

−∞

d lnL(θ)
dθ

L(θ) dx1 · · · dxn = 0.
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Hence ∫ ∞

−∞
· · ·
∫ ∞

−∞
θ

d lnL(θ)
dθ

L(θ) dx1 · · · dxn = 0. (4)

Since θ̂ is an unbiased estimator of θ, we see that

E
(
θ̂
)

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
θ̂ L(θ) dx1 · · · dxn = θ. (5)

Differentiating (5) with respect to θ, we have

d

dθ

∫ ∞

−∞
· · ·
∫ ∞

−∞
θ̂ L(θ) dx1 · · · dxn = 1.

Again using (1) with h(X1, ..., Xn) = θ̂, we have
∫ ∞

−∞
· · ·
∫ ∞

−∞
θ̂

d

dθ
L(θ) dx1 · · · dxn = 1. (6)

Rewriting (6) as

∫ ∞

−∞
· · ·
∫ ∞

−∞
θ̂

dL(θ)
dθ

1
L(θ)

L(θ) dx1 · · · dxn = 1

we have ∫ ∞

−∞
· · ·
∫ ∞

−∞
θ̂

d lnL(θ)
dθ

L(θ) dx1 · · · dxn = 1. (7)

From (4) and (7), we obtain

∫ ∞

−∞
· · ·
∫ ∞

−∞

(
θ̂ − θ
) d lnL(θ)

dθ
L(θ) dx1 · · · dxn = 1. (8)

By the Cauchy-Schwarz inequality,

1 =
(∫ ∞

−∞
· · ·
∫ ∞

−∞

(
θ̂ − θ
) d lnL(θ)

dθ
L(θ) dx1 · · · dxn

)2

≤
(∫ ∞

−∞
· · ·
∫ ∞

−∞

(
θ̂ − θ
)2

L(θ) dx1 · · · dxn

)

·
(∫ ∞

−∞
· · ·
∫ ∞

−∞

(
d lnL(θ)

dθ

)2

L(θ) dx1 · · · dxn

)

= V ar
(
θ̂
)

E

[(
∂ lnL(θ)
∂θ

)2
]

.



Probability and Mathematical Statistics 465

Therefore
V ar
(
θ̂
)
≥ 1

E

[(
∂ ln L(θ)

∂θ

)2]

and the proof of theorem is now complete.

If L(θ) is twice differentiable with respect to θ, the inequality (CR1) can
be stated equivalently as

V ar
(
θ̂
)
≥ −1

E
[
∂2 ln L(θ)

∂θ2

] . (CR2)

The inequalities (CR1) and (CR2) are known as Cramér-Rao lower bound
for the variance of θ̂ or the Fisher information inequality. The condition
(1) interchanges the order on integration and differentiation. Therefore any
distribution whose range depend on the value of the parameter is not covered
by this theorem. Hence distribution like the uniform distribution may not
be analyzed using the Cramér-Rao lower bound.

If the estimator θ̂ is minimum variance in addition to being unbiased,
then equality holds. We state this as a theorem without giving a proof.

Theorem 16.2. Let X1, X2, ..., Xn be a random sample of size n from a
population X with probability density f(x; θ), where θ is a parameter. If θ̂
is an unbiased estimator of θ and

V ar
(
θ̂
)

=
1

E

[(
∂ ln L(θ)

∂θ

)2] ,

then θ̂ is a uniform minimum variance unbiased estimator of θ. The converse
of this is not true.

Definition 16.5. An unbiased estimator θ̂ is called an efficient estimator if
it satisfies Cramér-Rao lower bound, that is

V ar
(
θ̂
)

=
1

E

[(
∂ ln L(θ)

∂θ

)2] .

In view of the above theorem it is easy to note that an efficient estimator
of a parameter is always a uniform minimum variance unbiased estimator of
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a parameter. However, not every uniform minimum variance unbiased esti-
mator of a parameter is efficient. In other words not every uniform minimum
variance unbiased estimators of a parameter satisfy the Cramér-Rao lower
bound

V ar
(
θ̂
)
≥ 1

E

[(
∂ ln L(θ)

∂θ

)2] .

Example 16.11. Let X1, X2, ..., Xn be a random sample of size n from a
distribution with density function

f(x; θ) =





3θ x2e−θx3

if 0 < x <∞

0 otherwise.

What is the Cramér-Rao lower bound for the variance of unbiased estimator
of the parameter θ ?

Answer: Let θ̂ be an unbiased estimator of θ. Cramér-Rao lower bound for
the variance of θ̂ is given by

V ar
(
θ̂
)
≥ −1

E
[
∂2 ln L(θ)

∂θ2

] ,

where L(θ) denotes the likelihood function of the given random sample
X1, X2, ..., Xn. Since, the likelihood function of the sample is

L(θ) =
n∏

i=1

3θ x2
i e

−θx3
i

we get

lnL(θ) = n ln θ +
n∑

i=1

ln
(
3x2

i

)
− θ

n∑

i=1

x3
i .

∂ lnL(θ)
∂θ

=
n

θ
−

n∑

i=1

x3
i ,

and
∂2 lnL(θ)
∂θ2

= − n

θ2
.

Hence, using this in the Cramér-Rao inequality, we get

V ar
(
θ̂
)
≥ θ

2

n
.
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Thus the Cramér-Rao lower bound for the variance of the unbiased estimator
of θ is θ2

n .

Example 16.12. Let X1, X2, ..., Xn be a random sample from a normal
population with unknown mean µ and known variance σ2 > 0. What is the
maximum likelihood estimator of µ? Is this maximum likelihood estimator
an efficient estimator of µ?

Answer: The probability density function of the population is

f(x; µ) =
1√

2π σ2
e−

1
2σ2 (x−µ)2 .

Thus
ln f(x; µ) = −1

2
ln(2πσ2)− 1

2σ2
(x− µ)2

and hence

lnL(µ) = −n

2
ln(2πσ2)− 1

2σ2

n∑

i=1

(xi − µ)2.

Taking the derivative of lnL(µ) with respect to µ, we get

d lnL(µ)
dµ

=
1
σ2

n∑

i=1

(xi − µ).

Setting this derivative to zero and solving for µ, we see that µ̂ = X.
The variance of X is given by

V ar
(
X
)

= V ar

(
X1 + X2 + · · · + Xn

n

)

=
σ2

n
.

Next we determine the Cramér-Rao lower bound for the estimator X.
We already know that

d lnL(µ)
dµ

=
1
σ2

n∑

i=1

(xi − µ)

and hence
d2 lnL(µ)

dµ2
= − n

σ2
.

Therefore
E

(
d2 lnL(µ)

dµ2

)
= − n

σ2
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and
− 1

E
(

d2 ln L(µ)
dµ2

) =
σ2

n
.

Thus
V ar
(
X
)

= − 1

E
(

d2 ln L(µ)
dµ2

)

and X is an efficient estimator of µ. Since every efficient estimator is a
uniform minimum variance unbiased estimator, therefore X is a uniform
minimum variance unbiased estimator of µ.

Example 16.13. Let X1, X2, ..., Xn be a random sample from a normal
population with known mean µ and unknown variance σ2 > 0. What is the
maximum likelihood estimator of σ2? Is this maximum likelihood estimator
a uniform minimum variance unbiased estimator of σ2?

Answer: Let us write θ = σ2. Then

f(x; θ) =
1√
2πθ

e−
1
2θ (x−µ)2

and

lnL(θ) = −n

2
ln(2π)− n

2
ln(θ)− 1

2θ

n∑

i=1

(xi − µ)2.

Differentiating lnL(θ) with respect to θ, we have

d

dθ
lnL(θ) = −n

2
1
θ

+
1

2θ2

n∑

i=1

(xi − µ)2

Setting this derivative to zero and solving for θ, we see that

θ̂ =
1
n

n∑

i=1

(Xi − µ)2.

Next we show that this estimator is unbiased. For this we consider

E
(
θ̂
)

= E

(
1
n

n∑

i=1

(Xi − µ)2
)

=
σ2

n
E

(
n∑

i=1

(
Xi − µ

σ

)2
)

=
θ

n
E(χ2(n) )

=
θ

n
n = θ.
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Hence θ̂ is an unbiased estimator of θ. The variance of θ̂ can be obtained as
follows:

V ar
(
θ̂
)

= V ar

(
1
n

n∑

i=1

(Xi − µ)2
)

=
σ4

n
V ar

(
n∑

i=1

(
Xi − µ

σ

)2
)

=
θ2

n2
V ar(χ2(n) )

=
θ2

n2
4

n

2

=
2θ2

n
=

2σ4

n
.

Finally we determine the Cramér-Rao lower bound for the variance of θ̂. The
second derivative of lnL(θ) with respect to θ is

d2 lnL(θ)
dθ2

=
n

2θ2
− 1
θ3

n∑

i=1

(xi − µ)2.

Hence

E

(
d2 lnL(θ)

dθ2

)
=

n

2θ2
− 1
θ3

E

(
n∑

i=1

(Xi − µ)2
)

=
n

2θ2
− θ
θ3

E
(
χ2(n)
)

=
n

2θ2
− n

θ2

= − n

2θ2

Thus
− 1

E
(

d2 ln L(θ)
dθ2

) =
θ2

n
=

2σ4

n
.

Therefore
V ar
(
θ̂
)

= − 1

E
(

d2 ln L(θ)
dθ2

) .

Hence θ̂ is an efficient estimator of θ. Since every efficient estimator is a
uniform minimum variance unbiased estimator, therefore 1

n

∑n
i=1(Xi − µ)2

is a uniform minimum variance unbiased estimator of σ2.

Example 16.14. Let X1, X2, ..., Xn be a random sample of size n from a
normal population known mean µ and variance σ2 > 0. Show that S2 =
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1
n−1

∑n
i=1(Xi −X)2 is an unbiased estimator of σ2. Further, show that S2

can not attain the Cramér-Rao lower bound.

Answer: From Example 16.2, we know that S2 is an unbiased estimator of
σ2. The variance of S2 can be computed as follows:

V ar
(
S2
)

= V ar

(
1

n− 1

n∑

i=1

(Xi −X)2
)

=
σ4

(n− 1)2
V ar

(
n∑

i=1

(
Xi −X

σ

)2
)

=
σ4

(n− 1)2
V ar(χ2(n− 1) )

=
σ4

(n− 1)2
2 (n− 1)

=
2σ4

n− 1
.

Next we let θ = σ2 and determine the Cramér-Rao lower bound for the
variance of S2. The second derivative of lnL(θ) with respect to θ is

d2 lnL(θ)
dθ2

=
n

2θ2
− 1
θ3

n∑

i=1

(xi − µ)2.

Hence

E

(
d2 lnL(θ)

dθ2

)
=

n

2θ2
− 1
θ3

E

(
n∑

i=1

(Xi − µ)2
)

=
n

2θ2
− θ
θ3

E
(
χ2(n)
)

=
n

2θ2
− n

θ2

= − n

2θ2

Thus
− 1

E
(

d2 ln L(θ)
dθ2

) =
θ2

n
=

2σ4

n
.

Hence
2σ4

n− 1
= V ar

(
S2
)

> − 1

E
(

d2 ln L(θ)
dθ2

) =
2σ4

n
.

This shows that S2 can not attain the Cramér-Rao lower bound.
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The disadvantages of Cramér-Rao lower bound approach are the fol-
lowings: (1) Not every density function f(x; θ) satisfies the assumptions
of Cramér-Rao theorem and (2) not every allowable estimator attains the
Cramér-Rao lower bound. Hence in any one of these situations, one does
not know whether an estimator is a uniform minimum variance unbiased
estimator or not.

16.4. Sufficient Estimator

In many situations, we can not easily find the distribution of the es-
timator θ̂ of a parameter θ even though we know the distribution of the
population. Therefore, we have no way to know whether our estimator θ̂ is
unbiased or biased. Hence, we need some other criteria to judge the quality
of an estimator. Sufficiency is one such criteria for judging the quality of an
estimator.

Recall that an estimator of a population parameter is a function of the
sample values that does not contain the parameter. An estimator summarizes
the information found in the sample about the parameter. If an estimator
summarizes just as much information about the parameter being estimated
as the sample does, then the estimator is called a sufficient estimator.

Definition 16.6. Let X ∼ f(x; θ) be a population and let X1, X2, ..., Xn

be a random sample of size n from this population X. An estimator θ̂ of
the parameter θ is said to be a sufficient estimator of θ if the conditional
distribution of the sample given the estimator θ̂ does not depend on the
parameter θ.

Example 16.15. If X1, X2, ..., Xn is a random sample from the distribution
with probability density function

f(x; θ) =






θx (1− θ)1−x if x = 0, 1

0 elsewhere ,

where 0 < θ < 1. Show that Y =
∑n

i=1 Xi is a sufficient statistic of θ.

Answer: First, we find the distribution of the sample. This is given by

f(x1, x2, ..., xn) =
n∏

i=1

θxi(1− θ)1−xi = θy(1− θ)n−y.

Since, each Xi ∼ BER(θ), we have

Y =
n∑

i=1

Xi ∼ BIN(n, θ).
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Therefore, the probability density function of Y is given by

g(y) =
(

n

y

)
θy (1− θ)n−y.

Further, since each Xi ∼ BER(θ), the space of each Xi is given by

RXi = { 0, 1 }.

Therefore, the space of the random variable Y =
∑n

i=1 Xi is given by

RY = { 0, 1, 2, 3, 4, ..., n }.

Let A be the event (X1 = x1, X2 = x2, ..., Xn = xn) and B denotes the event
(Y = y). Then A ⊂ B and therefore A

⋂
B = A. Now, we find the condi-

tional density of the sample given the estimator Y , that is

f(x1, x2, ..., xn/Y = y) = P (X1 = x1, X2 = x2, ..., Xn = xn /Y = y)

= P (A/B)

=
P (A
⋂

B)
P (B)

=
P (A)
P (B)

=
f(x1, x2, ..., xn)

g(y)

=
θy(1− θ)n−y

(n
y

)
θy (1− θ)n−y

=
1(n
y

) .

Hence, the conditional density of the sample given the statistic Y is indepen-
dent of the parameter θ. Therefore, by definition Y is a sufficient statistic.

Example 16.16. If X1, X2, ..., Xn is a random sample from the distribution
with probability density function

f(x; θ) =






e−(x−θ) if θ < x <∞

0 elsewhere ,

where −∞ < θ < ∞. What is the maximum likelihood estimator of θ ? Is
this maximum likelihood estimator sufficient estimator of θ ?



Probability and Mathematical Statistics 473

Answer: We have seen in Chapter 15 that the maximum likelihood estimator
of θ is Y = X(1), that is the first order statistic of the sample. Let us find
the probability density of this statistic, which is given by

g(y) =
n!

(n− 1)!
[F (y)]0 f(y) [1− F (y)]n−1

= n f(y) [1− F (y)]n−1

= n e−(y−θ)
[
1−
{

1− e−(y−θ)
}]n−1

= n enθ e−ny.

The probability density of the random sample is

f(x1, x2, ..., xn) =
n∏

i=1

e−(xi−θ)

= enθ e−n x,

where nx =
n∑

i=1

xi. Let A be the event (X1 = x1, X2 = x2, ..., Xn = xn) and

B denotes the event (Y = y). Then A ⊂ B and therefore A
⋂

B = A. Now,
we find the conditional density of the sample given the estimator Y , that is

f(x1, x2, ..., xn/Y = y) = P (X1 = x1, X2 = x2, ..., Xn = xn /Y = y)

= P (A/B)

=
P (A
⋂

B)
P (B)

=
P (A)
P (B)

=
f(x1, x2, ..., xn)

g(y)

=
enθ e−n x

n enθ e−n y

=
e−n x

n e−n y
.

Hence, the conditional density of the sample given the statistic Y is indepen-
dent of the parameter θ. Therefore, by definition Y is a sufficient statistic.
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We have seen that to verify whether an estimator is sufficient or not one
has to examine the conditional density of the sample given the estimator. To
compute this conditional density one has to use the density of the estimator.
The density of the estimator is not always easy to find. Therefore, verifying
the sufficiency of an estimator using this definition is not always easy. The
following factorization theorem of Fisher and Neyman helps to decide when
an estimator is sufficient.

Theorem 16.3. Let X1, X2, ..., Xn denote a random sample with proba-
bility density function f(x1, x2, ..., xn; θ), which depends on the population
parameter θ. The estimator θ̂ is sufficient for θ if and only if

f(x1, x2, ..., xn; θ) = φ(θ̂, θ) h(x1, x2, ..., xn)

where φ depends on x1, x2, ..., xn only through θ̂ and h(x1, x2, ..., xn) does
not depend on θ.

Now we give two examples to illustrate the factorization theorem.

Example 16.17. Let X1, X2, ..., Xn be a random sample from a distribution
with density function

f(x;λ) =






λx e−λ

x! if x = 0, 1, 2, ...,∞

0 elsewhere,

where λ > 0 is a parameter. Find the maximum likelihood estimator of λ
and show that the maximum likelihood estimator of λ is sufficient estimator
of the parameter λ.

Answer: First, we find the density of the sample or the likelihood function
of the sample. The likelihood function of the sample is given by

L(λ) =
n∏

i=1

f(xi;λ)

=
n∏

i=1

λxi e−λ

xi!

=
λnXe−nλ

n∏

i=1

(xi!)
.
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Taking the logarithm of the likelihood function, we get

lnL(λ) = nx lnλ− nλ− ln
n∏

i=1

(xi!).

Therefore
d

dλ
lnL(λ) =

1
λ

nx− n.

Setting this derivative to zero and solving for λ, we get

λ = x.

The second derivative test assures us that the above λ is a maximum. Hence,
the maximum likelihood estimator of λ is the sample mean X. Next, we
show that X is sufficient, by using the Factorization Theorem of Fisher and
Neyman. We factor the joint density of the sample as

L(λ) =
λnxe−nλ

n∏

i=1

(xi!)

=
[
λnx e−nλ

] 1
n∏

i=1

(xi!)

= φ(X,λ) h (x1, x2, ..., xn) .

Therefore, the estimator X is a sufficient estimator of λ.

Example 16.18. Let X1, X2, ..., Xn be a random sample from a normal
distribution with density function

f(x; µ) =
1√
2π

e−
1
2 (x−µ)2 ,

where −∞ < µ <∞ is a parameter. Find the maximum likelihood estimator
of µ and show that the maximum likelihood estimator of µ is a sufficient
estimator.

Answer: We know that the maximum likelihood estimator of µ is the sample
mean X. Next, we show that this maximum likelihood estimator X is a
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sufficient estimator of µ. The joint density of the sample is given by

f(x1, x2, ...,xn; µ)

=
n∏

i=1

f(xi; µ)

=
n∏

i=1

1√
2π

e−
1
2 (xi−µ)2

=
(

1√
2π

)n

e

− 1
2

n∑

i=1

(xi − µ)2

=
(

1√
2π

)n

e

− 1
2

n∑

i=1

[(xi − x) + (x− µ)]2

=
(

1√
2π

)n

e

− 1
2

n∑

i=1

[
(xi − x)2 + 2(xi − x)(x− µ) + (x− µ)2

]

=
(

1√
2π

)n

e

− 1
2

n∑

i=1

[
(xi − x)2 + (x− µ)2

]

=
(

1√
2π

)n

e−
n
2 (x−µ)2 e

− 1
2

n∑

i=1

(xi − x)2

Hence, by the Factorization Theorem, X is a sufficient estimator of the pop-
ulation mean.

Note that the probability density function of the Example 16.17 which
is

f(x;λ) =






λx e−λ

x! if x = 0, 1, 2, ...,∞

0 elsewhere ,
can be written as

f(x;λ) = e{x lnλ−ln x!−λ}

for x = 0, 1, 2, ... This density function is of the form

f(x;λ) = e{K(x)A(λ)+S(x)+B(λ)}.

Similarly, the probability density function of the Example 16.12, which is

f(x; µ) =
1√
2π

e−
1
2 (x−µ)2
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can also be written as

f(x; µ) = e{xµ− x2
2 −µ2

2 − 1
2 ln(2π)}.

This probability density function is of the form

f(x; µ) = e{K(x)A(µ)+S(x)+B(µ)}.

We have also seen that in both the examples, the sufficient estimators were

the sample mean X, which can be written as 1
n

n∑

i=1

Xi.

Our next theorem gives a general result in this direction. The following
theorem is known as the Pitman-Koopman theorem.

Theorem 16.4. Let X1, X2, ..., Xn be a random sample from a distribution
with probability density function of the exponential form

f(x; θ) = e{K(x)A(θ)+S(x)+B(θ)}

on a support free of θ. Then the statistic
n∑

i=1

K(Xi) is a sufficient statistic

for the parameter θ.

Proof: The joint density of the sample is

f(x1, x2, ..., xn; θ) =
n∏

i=1

f(xi; θ)

=
n∏

i=1

e{K(xi)A(θ)+S(xi)+B(θ)}

= e

{
n∑

i=1

K(xi)A(θ) +
n∑

i=1

S(xi) + n B(θ)

}

= e

{
n∑

i=1

K(xi)A(θ) + n B(θ)

}

e

[
n∑

i=1

S(xi)

]

.

Hence by the Factorization Theorem the estimator
n∑

i=1

K(Xi) is a sufficient

statistic for the parameter θ. This completes the proof.
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Example 16.19. Let X1, X2, ..., Xn be a random sample from a distribution
with density function

f(x; θ) =






θ xθ−1 for 0 < x < 1

0 otherwise,

where θ > 0 is a parameter. Using the Pitman-Koopman Theorem find a
sufficient estimator of θ.

Answer: The Pitman-Koopman Theorem says that if the probability density
function can be expressed in the form of

f(x; θ) = e{K(x)A(θ)+S(x)+B(θ)}

then
∑n

i=1 K(Xi) is a sufficient statistic for θ. The given population density
can be written as

f(x; θ) = θ xθ−1

= e{ln[θ xθ−1]

= e{ln θ+(θ−1) ln x}.

Thus,
K(x) = lnx A(θ) = θ

S(x) = − lnx B(θ) = ln θ.

Hence by Pitman-Koopman Theorem,
n∑

i=1

K(Xi) =
n∑

i=1

lnXi

= ln
n∏

i=1

Xi.

Thus ln
∏n

i=1 Xi is a sufficient statistic for θ.

Remark 16.1. Notice that
n∏

i=1

Xi is also a sufficient statistic of θ, since

knowing ln

(
n∏

i=1

Xi

)
, we also know

n∏

i=1

Xi.

Example 16.20. Let X1, X2, ..., Xn be a random sample from a distribution
with density function

f(x; θ) =






1
θ e−

x
θ for 0 < x <∞

0 otherwise,
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where 0 < θ < ∞ is a parameter. Find a sufficient estimator of θ.

Answer: First, we rewrite the population density in the exponential form.
That is

f(x; θ) =
1
θ

e−
x
θ

= e
ln
[

1
θ e− x

θ
]

= e− ln θ− x
θ .

Hence
K(x) = x A(θ) = −1

θ
S(x) = 0 B(θ) = − ln θ.

Hence by Pitman-Koopman Theorem,

n∑

i=1

K(Xi) =
n∑

i=1

Xi = n X.

Thus, nX is a sufficient statistic for θ. Since knowing nX, we also know X,
the estimator X is also a sufficient estimator of θ.

Example 16.21. Let X1, X2, ..., Xn be a random sample from a distribution
with density function

f(x; θ) =






e−(x−θ) for θ < x <∞

0 otherwise,

where −∞ < θ < ∞ is a parameter. Can Pitman-Koopman Theorem be
used to find a sufficient statistic for θ?

Answer: No. We can not use Pitman-Koopman Theorem to find a sufficient
statistic for θ since the domain where the population density is nonzero is
not free of θ.

Next, we present the connection between the maximum likelihood esti-
mator and the sufficient estimator. If there is a sufficient estimator for the
parameter θ and if the maximum likelihood estimator of this θ is unique, then
the maximum likelihood estimator is a function of the sufficient estimator.
That is

θ̂ML = ψ(θ̂S),

where ψ is a real valued function, θ̂ML is the maximum likelihood estimator
of θ, and θ̂S is the sufficient estimator of θ.



Criteria for Evaluating the Goodness of Estimators 480

Similarly, a connection can be established between the uniform minimum
variance unbiased estimator and the sufficient estimator of a parameter θ. If
there is a sufficient estimator for the parameter θ and if the uniform minimum
variance unbiased estimator of this θ is unique, then the uniform minimum
variance unbiased estimator is a function of the sufficient estimator. That is

θ̂MVUE = η(θ̂S),

where η is a real valued function, θ̂MVUE is the uniform minimum variance
unbiased estimator of θ, and θ̂S is the sufficient estimator of θ.

Finally, we may ask “If there are sufficient estimators, why are not there
necessary estimators?” In fact, there are. Dynkin (1951) gave the following
definition.

Definition 16.7. An estimator is said to be a necessary estimator if it can
be written as a function of every sufficient estimators.

16.5. Consistent Estimator

Let X1, X2, ..., Xn be a random sample from a population X with density
f(x; θ). Let θ̂ be an estimator of θ based on the sample of size n. Obviously
the estimator depends on the sample size n. In order to reflect the depen-
dency of θ̂ on n, we denote θ̂ as θ̂n.

Definition 16.7. Let X1, X2, ..., Xn be a random sample from a population
X with density f(x; θ). A sequence of estimators {θ̂n} of θ is said to be
consistent for θ if and only if the sequence {θ̂n} converges in probability to
θ, that is, for any ε > 0

lim
n→∞

P
(∣∣∣θ̂n − θ

∣∣∣ ≥ ε
)

= 0.

Note that consistency is actually a concept relating to a sequence of
estimators {θ̂n}∞n=no

but we usually say “consistency of θ̂n” for simplicity.
Further, consistency is a large sample property of an estimator.

The following theorem states that if the mean squared error goes to zero
as n goes to infinity, then {θ̂n} converges in probability to θ.

Theorem 16.5. Let X1, X2, ..., Xn be a random sample from a population
X with density f(x; θ) and {θ̂n} be a sequence of estimators of θ based on
the sample. If the variance of θ̂n exists for each n and is finite and

lim
n→∞

E

((
θ̂n − θ
)2)

= 0
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then, for any ε > 0,
lim

n→∞
P
(∣∣∣θ̂n − θ

∣∣∣ ≥ ε
)

= 0.

Proof: By Markov Inequality (see Theorem 13.8) we have

P

((
θ̂n − θ
)2
≥ ε2
)
≤

E

((
θ̂n − θ
)2)

ε2

for all ε > 0. Since the events
(
θ̂n − θ
)2
≥ ε2 and |θ̂n − θ| ≥ ε

are same, we see that

P

((
θ̂n − θ
)2
≥ ε2
)

= P
(
|θ̂n − θ| ≥ ε

)
≤

E

((
θ̂n − θ
)2)

ε2

for all n ∈ IN. Hence if

lim
n→∞

E

((
θ̂n − θ
)2)

= 0

then
lim

n→∞
P
(
|θ̂n − θ| ≥ ε

)
= 0

and the proof of the theorem is complete.

Let
B
(
θ̂, θ
)

= E
(
θ̂
)
− θ

be the biased. If an estimator is unbiased, then B
(
θ̂, θ
)

= 0. Next we show
that

E

((
θ̂ − θ
)2)

= V ar
(
θ̂
)

+
[
B
(
θ̂, θ
)]2

. (1)

To see this consider

E

((
θ̂ − θ
)2)

= E

((
θ̂2 − 2 θ̂ θ + θ2

)2)

= E
(
θ̂2
)
− 2E
(
θ̂
)
θ + θ2

= E
(
θ̂2
)
− E
(
θ̂
)2

+ E
(
θ̂
)2
− 2E
(
θ̂
)
θ + θ2

= V ar
(
θ̂
)

+ E
(
θ̂
)2
− 2E
(
θ̂
)
θ + θ2

= V ar
(
θ̂
)

+
[
E
(
θ̂
)
− θ
]2

= V ar
(
θ̂
)

+
[
B
(
θ̂, θ
)]2

.
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In view of (1), we can say that if

lim
n→∞

V ar
(
θ̂n
)

= 0 (2)

and
lim

n→∞
B
(
θ̂n, θ
)

= 0 (3)

then

lim
n→∞

E

((
θ̂n − θ
)2)

= 0.

In other words, to show a sequence of estimators is consistent we have to
verify the limits (2) and (3).

Example 16.22. Let X1, X2, ..., Xn be a random sample from a normal
population X with mean µ and variance σ2 > 0. Is the likelihood estimator

σ̂2 =
1
n

n∑

i=1

(
Xi −X

)2
.

of σ2 a consistent estimator of σ2?

Answer: Since σ̂2 depends on the sample size n, we denote σ̂2 as σ̂2
n. Hence

σ̂2
n =

1
n

n∑

i=1

(
Xi −X

)2
.

The variance of σ̂2
n is given by

V ar
(
σ̂2

n

)
= V ar

(
1
n

n∑

i=1

(
Xi −X

)2
)

=
1
n2

V ar

(
σ2 (n− 1)S2

σ2

)

=
σ4

n2
V ar

(
(n− 1)S2

σ2

)

=
σ4

n2
V ar
(
χ2(n− 1)

)

=
2(n− 1)σ4

n2

=
[

1
n
− 1

n2

]
2σ4.
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Hence

lim
n→∞

V ar
(
θ̂n
)

= lim
n→∞

[
1
n
− 1

n2

]
2σ4 = 0.

The biased B
(
θ̂n, θ
)

is given by

B
(
θ̂n, θ
)

= E
(
θ̂n
)
− σ2

= E

(
1
n

n∑

i=1

(
Xi −X

)2
)
− σ2

=
1
n

E

(
σ2 (n− 1)S2

σ2

)
− σ2

=
σ2

n
E
(
χ2(n− 1)

)
− σ2

=
(n− 1)σ2

n
− σ2

= −σ
2

n
.

Thus

lim
n→∞

B
(
θ̂n, θ
)

= − lim
n→∞

σ2

n
= 0.

Hence 1
n

n∑

i=1

(
Xi −X

)2 is a consistent estimator of σ2.

In the last example we saw that the likelihood estimator of variance is a
consistent estimator. In general, if the density function f(x; θ) of a population
satisfies some mild conditions, then the maximum likelihood estimator of θ is
consistent. Similarly, if the density function f(x; θ) of a population satisfies
some mild conditions, then the estimator obtained by moment method is also
consistent.

Since consistency is a large sample property of an estimator, some statis-
ticians suggest that consistency should not be used alone for judging the
goodness of an estimator; rather it should be used along with other criteria.

16.6. Review Exercises

1. Let T1 and T2 be estimators of a population parameter θ based upon the
same random sample. If Ti ∼ N

(
θ, σ2

i

)
i = 1, 2 and if T = bT1 + (1 − b)T2,

then for what value of b, T is a minimum variance unbiased estimator of θ ?
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2. Let X1, X2, ..., Xn be a random sample from a distribution with density
function

f(x; θ) =
1
2θ

e−
|x|
θ −∞ < x <∞,

where 0 < θ is a parameter. What is the expected value of the maximum
likelihood estimator of θ ? Is this estimator unbiased?

3. Let X1, X2, ..., Xn be a random sample from a distribution with density
function

f(x; θ) =
1
2θ

e−
|x|
θ −∞ < x <∞,

where 0 < θ is a parameter. Is the maximum likelihood estimator an efficient
estimator of θ?

4. A random sample X1, X2, ..., Xn of size n is selected from a normal dis-
tribution with variance σ2. Let S2 be the unbiased estimator of σ2, and T

be the maximum likelihood estimator of σ2. If 20T − 19S2 = 0, then what is
the sample size?

5. Suppose X and Y are independent random variables each with density
function

f(x) =

{
2 x θ2 for 0 < x < 1

θ

0 otherwise.

If k (X + 2Y ) is an unbiased estimator of θ−1, then what is the value of k?

6. An object of length c is measured by two persons using the same in-
strument. The instrument error has a normal distribution with mean 0 and
variance 1. The first person measures the object 25 times, and the average
of the measurements is X̄ = 12. The second person measures the objects 36
times, and the average of the measurements is Ȳ = 12.8. To estimate c we
use the weighted average a X̄ +b Ȳ as an estimator. Determine the constants
a and b such that a X̄ + b Ȳ is the minimum variance unbiased estimator of
c and then calculate the minimum variance unbiased estimate of c.

7. Let X1, X2, ..., Xn be a random sample from a distribution with probabil-
ity density function

f(x) =





3 θ x2 e−θ x3

for 0 < x <∞

0 otherwise,

where θ > 0 is an unknown parameter. Find a sufficient statistics for θ.
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8. Let X1, X2, ..., Xn be a random sample from a Weibull distribution with
probability density function

f(x) =






β
θβ xβ−1 e−( x

θ )β if x > 0

0 otherwise ,

where θ > 0 and β > 0 are parameters. Find a sufficient statistics for θ
with β known, say β = 2. If β is unknown, can you find a single sufficient
statistics for θ?

9. Let X1, X2 be a random sample of size 2 from population with probability
density

f(x; θ) =






1
θ e−

x
θ if 0 < x <∞

0 otherwise,

where θ > 0 is an unknown parameter. If Y =
√

X1X2, then what should
be the value of the constant k such that kY is an unbiased estimator of the
parameter θ ?

10. Let X1, X2, ..., Xn be a random sample from a population with proba-
bility density function

f(x; θ) =






1
θ if 0 < x < θ

0 otherwise ,

where θ > 0 is an unknown parameter. If X denotes the sample mean, then
what should be value of the constant k such that kX is an unbiased estimator
of θ ?

11. Let X1, X2, ..., Xn be a random sample from a population with proba-
bility density function

f(x; θ) =






1
θ if 0 < x < θ

0 otherwise ,

where θ > 0 is an unknown parameter. If Xmed denotes the sample median,
then what should be value of the constant k such that kXmed is an unbiased
estimator of θ ?
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12. What do you understand by an unbiased estimator of a parameter θ?
What is the basic principle of the maximum likelihood estimation of a param-
eter θ? What is the basic principle of the Bayesian estimation of a parame-
ter θ? What is the main difference between Bayesian method and likelihood
method.

13. Let X1, X2, ..., Xn be a random sample from a population X with density
function

f(x; θ) =






θ
(1+x)θ+1 for 0 ≤ x <∞

0 otherwise,

where θ > 0 is an unknown parameter. What is a sufficient statistic for the
parameter θ?

14. Let X1, X2, ..., Xn be a random sample from a population X with density
function

f(x; θ) =






x
θ2 e−

x2

2θ2 for 0 ≤ x <∞

0 otherwise,
where θ is an unknown parameter. What is a sufficient statistic for the
parameter θ?

15. Let X1, X2, ..., Xn be a random sample from a distribution with density
function

f(x; θ) =






e−(x−θ) for θ < x <∞

0 otherwise,
where −∞ < θ < ∞ is a parameter. What is the maximum likelihood
estimator of θ? Find a sufficient statistics of the parameter θ.

16. Let X1, X2, ..., Xn be a random sample from a distribution with density
function

f(x; θ) =






e−(x−θ) for θ < x <∞

0 otherwise,

where −∞ < θ < ∞ is a parameter. Are the estimators X(1) and X − 1 are
unbiased estimators of θ? Which one is more efficient than the other?

17. Let X1, X2, ..., Xn be a random sample from a population X with density
function

f(x; θ) =






θ xθ−1 for 0 ≤ x < 1

0 otherwise,
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where θ > 1 is an unknown parameter. What is a sufficient statistic for the
parameter θ?

18. Let X1, X2, ..., Xn be a random sample from a population X with density
function

f(x; θ) =






θ α xα−1e−θxα for 0 ≤ x <∞

0 otherwise,

where θ > 0 and α > 0 are parameters. What is a sufficient statistic for the
parameter θ for a fixed α?

19. Let X1, X2, ..., Xn be a random sample from a population X with density
function

f(x; θ) =






θ αθ

x(θ+1) for α < x <∞

0 otherwise,
where θ > 0 and α > 0 are parameters. What is a sufficient statistic for the
parameter θ for a fixed α?

20. Let X1, X2, ..., Xn be a random sample from a population X with density
function

f(x; θ) =






(m
x

)
θx(1− θ)m−x for x = 0, 1, 2, ..., m

0 otherwise,

where 0 < θ < 1 is parameter. Show that X
m is a uniform minimum variance

unbiased estimator of θ for a fixed m.

21. Let X1, X2, ..., Xn be a random sample from a population X with density
function

f(x; θ) =






θ xθ−1 for 0 < x < 1

0 otherwise,

where θ > 1 is parameter. Show that − 1
n

∑n
i=1 ln(Xi) is a uniform minimum

variance unbiased estimator of 1
θ .

22. Let X1, X2, ..., Xn be a random sample from a uniform population X

on the interval [0, θ], where θ > 0 is a parameter. Is the likelihood estimator
θ̂ = X(n) of θ a consistent estimator of θ?

23. Let X1, X2, ..., Xn be a random sample from a population X ∼ POI(λ),
where λ > 0 is a parameter. Is the estimator X of λ a consistent estimator
of λ?
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24. Let X1, X2, ..., Xn be a random sample from a population X having the
probability density function

f(x; θ) =
{
θ xθ−1, if 0 < x < 1
0 otherwise,

where θ > 0 is a parameter. Is the estimator θ̂ = X
1−X

of θ, obtained by the
moment method, a consistent estimator of θ?

25. Let X1, X2, ..., Xn be a random sample from a population X having the
probability density function

f(x; p) =






(n
x

)
px (1− p)n−x, if x = 0, 1, 2, ..., n

0 otherwise,

where 0 < p < 1 is a parameter and m is a fixed positive integer. What is the
maximum likelihood estimator for p. Is this maximum likelihood estimator
for p is an efficient estimator?

26. Let X1, X2, ..., Xn be a random sample from a population X having the
probability density function

f(x; θ) =
{

2
θ2 θ − x, if 0 ≤ x ≤ θ
0 otherwise,

where θ > 0 is a parameter. Find an estimator for θ using the moment
method.

27. A box contains 50 red and blue balls out of which θ are red. A sample
of 30 balls is to be selected without replacement. If X denotes the number
of red balls in the sample, then find an estimator for θ using the moment
method.
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Chapter 17

SOME TECHNIQUES
FOR FINDING INTERVAL

ESTIMATORS
FOR

PARAMETERS

In point estimation we find a value for the parameter θ given a sample
data. For example, if X1, X2, ..., Xn is a random sample of size n from a
population with probability density function

f(x; θ) =






√
2
π e−

1
2 (x−θ)2 for x ≥ θ

0 otherwise,

then the likelihood function of θ is

L(θ) =
n∏

i=1

√
2
π

e−
1
2 (xi−θ)2 ,

where x1 ≥ θ, x2 ≥ θ, ..., xn ≥ θ. This likelihood function simplifies to

L(θ) =
[

2
π

]n
2

e

− 1
2

n∑

i=1

(xi − θ)2

,

where min{x1, x2, ..., xn} ≥ θ. Taking the natural logarithm of L(θ) and
maximizing, we obtain the maximum likelihood estimator of θ as the first
order statistic of the sample X1, X2, ..., Xn, that is

θ̂ = X(1),
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where X(1) = min{X1, X2, ..., Xn}. Suppose the true value of θ = 1. Using
the maximum likelihood estimator of θ, we are trying to guess this value of
θ based on a random sample. Suppose X1 = 1.5, X2 = 1.1, X3 = 1.7, X4 =
2.1, X5 = 3.1 is a set of sample data from the above population. Then based
on this random sample, we will get

θ̂ML = X(1) = min{1.5, 1.1, 1.7, 2.1, 3.1} = 1.1.

If we take another random sample, say X1 = 1.8, X2 = 2.1, X3 = 2.5, X4 =
3.1, X5 = 2.6 then the maximum likelihood estimator of this θ will be θ̂ = 1.8
based on this sample. The graph of the density function f(x; θ) for θ = 1 is
shown below.

From the graph, it is clear that a number close to 1 has higher chance of
getting randomly picked by the sampling process, then the numbers that are
substantially bigger than 1. Hence, it makes sense that θ should be estimated
by the smallest sample value. However, from this example we see that the
point estimate of θ is not equal to the true value of θ. Even if we take many
random samples, yet the estimate of θ will rarely equal the actual value of
the parameter. Hence, instead of finding a single value for θ, we should
report a range of probable values for the parameter θ with certain degree of
confidence. This brings us to the notion of confidence interval of a parameter.

17.1. Interval Estimators and Confidence Intervals for Parameters

The interval estimation problem can be stated as follow: Given a random
sample X1, X2, ..., Xn and a probability value 1− α, find a pair of statistics
L = L(X1, X2, ..., Xn) and U = U(X1, X2, ..., Xn) with L ≤ U such that the



Probability and Mathematical Statistics 491

probability of θ being on the random interval [L, U ] is 1− α. That is

P (L ≤ θ ≤ U) = 1− α.

Recall that a sample is a portion of the population usually chosen by
method of random sampling and as such it is a set of random variables
X1, X2, ..., Xn with the same probability density function f(x; θ) as the pop-
ulation. Once the sampling is done, we get

X1 = x1, X2 = x2, · · · , Xn = xn

where x1, x2, ..., xn are the sample data.

Definition 17.1. Let X1, X2, ..., Xn be a random sample of size n from
a population X with density f(x; θ), where θ is an unknown parameter.
The interval estimator of θ is a pair of statistics L = L(X1, X2, ..., Xn) and
U = U(X1, X2, ..., Xn) with L ≤ U such that if x1, x2, ..., xn is a set of sample
data, then θ belongs to the interval [L(x1, x2, ...xn), U(x1, x2, ...xn)].

The interval [l, u] will be denoted as an interval estimate of θ whereas the
random interval [L, U ] will denote the interval estimator of θ. Notice that
the interval estimator of θ is the random interval [L, U ]. Next, we define the
100(1− α)% confidence interval for the unknown parameter θ.

Definition 17.2. Let X1, X2, ..., Xn be a random sample of size n from a
population X with density f(x; θ), where θ is an unknown parameter. The
interval estimator of θ is called a 100(1− α)% confidence interval for θ if

P (L ≤ θ ≤ U) = 1− α.

The random variable L is called the lower confidence limit and U is called the
upper confidence limit. The number (1−α) is called the confidence coefficient
or degree of confidence.

There are several methods for constructing confidence intervals for an
unknown parameter θ. Some well known methods are: (1) Pivotal Quantity
Method, (2) Maximum Likelihood Estimator (MLE) Method, (3) Bayesian
Method, (4) Invariant Methods, (5) Inversion of Test Statistic Method, and
(6) The Statistical or General Method.

In this chapter, we only focus on the pivotal quantity method and the
MLE method. We also briefly examine the the statistical or general method.
The pivotal quantity method is mainly due to George Bernard and David
Fraser of the University of Waterloo, and this method is perhaps one of
the most elegant methods of constructing confidence intervals for unknown
parameters.
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17.2. Pivotal Quantity Method

In this section, we explain how the notion of pivotal quantity can be
used to construct confidence interval for a unknown parameter. We will
also examine how to find pivotal quantities for parameters associated with
certain probability density functions. We begin with the formal definition of
the pivotal quantity.

Definition 17.3. Let X1, X2, ..., Xn be a random sample of size n from a
population X with probability density function f(x; θ), where θ is an un-
known parameter. A pivotal quantity Q is a function of X1, X2, ..., Xn and θ
whose probability distribution is independent of the parameter θ.

Notice that the pivotal quantity Q(X1, X2, ..., Xn, θ) will usually contain
both the parameter θ and an estimator (that is, a statistic) of θ. Now we
give an example of a pivotal quantity.

Example 17.1. Let X1, X2, ..., Xn be a random sample from a normal
population X with mean µ and a known variance σ2. Find a pivotal quantity
for the unknown parameter µ.

Answer: Since each Xi ∼ N(µ, σ2),

X ∼ N

(
µ,
σ2

n

)
.

Standardizing X, we see that

X − µ
σ√
n

∼ N(0, 1).

The statistics Q given by

Q(X1, X2, ..., Xn, µ) =
X − µ

σ√
n

is a pivotal quantity since it is a function of X1, X2, ..., Xn and µ and its
probability density function is free of the parameter µ.

There is no general rule for finding a pivotal quantity (or pivot) for
a parameter θ of an arbitrarily given density function f(x; θ). Hence to
some extents, finding pivots relies on guesswork. However, if the probability
density function f(x; θ) belongs to the location-scale family, then there is a
systematic way to find pivots.
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Definition 17.4. Let g : IR → IR be a probability density function. Then for
any µ and any σ > 0, the family of functions

F =
{

f(x; µ, σ) =
1
σ

g

(
x− µ

σ

)
| µ ∈ (−∞,∞), σ ∈ (0,∞)

}

is called the location-scale family with standard probability density f(x; θ).
The parameter µ is called the location parameter and the parameter σ is
called the scale parameter. If σ = 1, then F is called the location family. If
µ = 0, then F is called the scale family

It should be noted that each member f (x; µ, σ) of the location-scale
family is a probability density function. If we take g(x) = 1√

2π
e−

1
2 x2

, then
the normal density function

f(x; µ, σ) =
1
σ

g

(
x− µ

σ

)
=

1√
2πσ2

e−
1
2 ( x−µ

σ )2

, −∞ < x <∞

belongs to the location-scale family. The density function

f(x; θ) =






1
θ e−

x
θ if 0 < x <∞

0 otherwise,

belongs to the scale family. However, the density function

f(x; θ) =






θ xθ−1 if 0 < x < 1

0 otherwise,

does not belong to the location-scale family.

It is relatively easy to find pivotal quantities for location or scale param-
eter when the density function of the population belongs to the location-scale
family F . When the density function belongs to location family, the pivot
for the location parameter µ is µ̂ − µ, where µ̂ is the maximum likelihood
estimator of µ. If σ̂ is the maximum likelihood estimator of σ, then the pivot
for the scale parameter σ is σ̂

σ when the density function belongs to the scale

family. The pivot for location parameter µ is µ̂−µ

σ̂
and the pivot for the scale

parameter σ is σ̂
σ when the density function belongs to location-scale fam-

ily. Sometime it is appropriate to make a minor modification to the pivot
obtained in this way, such as multiplying by a constant, so that the modified
pivot will have a known distribution.
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Remark 17.1. Pivotal quantity can also be constructed using a sufficient
statistic for the parameter. Suppose T = T (X1, X2, ..., Xn) is a sufficient
statistic based on a random sample X1, X2, ..., Xn from a population X with
probability density function f(x; θ). Let the probability density function of
T be g(t; θ). If g(t; θ) belongs to the location family, then an appropriate
constant multiple of T −a(θ) is a pivotal quantity for the location parameter
θ for some suitable expression a(θ). If g(t; θ) belongs to the scale family, then
an appropriate constant multiple of T

b(θ) is a pivotal quantity for the scale
parameter θ for some suitable expression b(θ). Similarly, if g(t; θ) belongs to
the location-scale family, then an appropriate constant multiple of T−a(θ)

b(θ) is
a pivotal quantity for the location parameter θ for some suitable expressions
a(θ) and b(θ).

Algebraic manipulations of pivots are key factors in finding confidence
intervals. If Q = Q(X1, X2, ..., Xn, θ) is a pivot, then a 100(1−α)% confidence
interval for θ may be constructed as follows: First, find two values a and b

such that

P (a ≤ Q ≤ b) = 1− α,

then convert the inequality a ≤ Q ≤ b into the form L ≤ θ ≤ U .

For example, if X is normal population with unknown mean µ and known
variance σ2, then its pdf belongs to the location-scale family. A pivot for µ

is X−µ
S . However, since the variance σ2 is known, there is no need to take

S. So we consider the pivot X−µ
σ to construct the 100(1 − 2α)% confidence

interval for µ. Since our population X ∼ N(µ, σ2), the sample mean X is
also a normal with the same mean µ and the variance equals to σ√

n
. Hence

1− 2α = P

(
−zα ≤

X − µ
σ√
n

≤ zα

)

= P

(
µ− zα

σ√
n
≤ X ≤ µ + zα

σ√
n

)

= P

(
X − zα

σ√
n
≤ µ ≤ X + zα

σ√
n

)
.

Therefore, the 100(1− 2α)% confidence interval for µ is

[
X − zα

σ√
n

, X + zα
σ√
n

]
.
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Here zα denotes the 100(1−α)-percentile (or (1−α)-quartile) of a standard
normal random variable Z, that is

P (Z ≤ zα) = 1− α,

where α ≤ 0.5 (see figure below). Note that α = P (Z ≤ −zα) if α ≤ 0.5.

A 100(1 − α)% confidence interval for a parameter θ has the following
interpretation. If X1 = x1, X2 = x2, ..., Xn = xn is a sample of size n, then
based on this sample we construct a 100(1 − α)% confidence interval [l, u]
which is a subinterval of the real line IR. Suppose we take large number of
samples from the underlying population and construct all the corresponding
100(1 − α)% confidence intervals, then approximately 100(1 − α)% of these
intervals would include the unknown value of the parameter θ.

In the next several sections, we illustrate how pivotal quantity method
can be used to determine confidence intervals for various parameters.

17.3. Confidence Interval for Population Mean

At the outset, we use the pivotal quantity method to construct a con-
fidence interval for the mean of a normal population. Here we assume first
the population variance is known and then variance is unknown. Next, we
construct the confidence interval for the mean of a population with continu-
ous, symmetric and unimodal probability distribution by applying the central
limit theorem.

Let X1, X2, ..., Xn be a random sample from a population X ∼ N(µ, σ2),
where µ is an unknown parameter and σ2 is a known parameter. First of all,
we need a pivotal quantity Q(X1, X2, ..., Xn, µ). To construct this pivotal
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quantity, we find the likelihood estimator of the parameter µ. We know that
µ̂ = X. Since, each Xi ∼ N(µ, σ2), the distribution of the sample mean is
given by

X ∼ N

(
µ,
σ2

n

)
.

It is easy to see that the distribution of the estimator of µ is not independent
of the parameter µ. If we standardize X, then we get

X − µ
σ√
n

∼ N(0, 1).

The distribution of the standardized X is independent of the parameter µ.
This standardized X is the pivotal quantity since it is a function of the
sample X1, X2, ..., Xn and the parameter µ, and its probability distribution
is independent of the parameter µ. Using this pivotal quantity, we construct
the confidence interval as follows:

1− α = P

(
−zα

2
≤ X − µ

σ√
n

≤ zα
2

)

= P

(
X −
(
σ√
n

)
zα

2
≤ µ ≤ X +

(
σ√
n

)
zα

2

)

Hence, the (1 − α)% confidence interval for µ when the population X is
normal with the known variance σ2 is given by

[
X −
(
σ√
n

)
zα

2
, X +

(
σ√
n

)
zα

2

]
.

This says that if samples of size n are taken from a normal population with
mean µ and known variance σ2 and if the interval

[
X −
(
σ√
n

)
zα

2
, X +

(
σ√
n

)
zα

2

]

is constructed for every sample, then in the long-run 100(1 − α)% of the
intervals will cover the unknown parameter µ and hence with a confidence of
(1− α)100% we can say that µ lies on the interval

[
X −
(
σ√
n

)
zα

2
, X +

(
σ√
n

)
zα

2

]
.
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The interval estimate of µ is found by taking a good (here maximum likeli-
hood) estimator X of µ and adding and subtracting zα

2
times the standard

deviation of X.

Remark 17.2. By definition a 100(1−α)% confidence interval for a param-
eter θ is an interval [L, U ] such that the probability of θ being in the interval
[L, U ] is 1− α. That is

1− α = P (L ≤ θ ≤ U).

One can find infinitely many pairs L, U such that

1− α = P (L ≤ θ ≤ U).

Hence, there are infinitely many confidence intervals for a given parameter.
However, we only consider the confidence interval of shortest length. If a
confidence interval is constructed by omitting equal tail areas then we obtain
what is known as the central confidence interval. In a symmetric distribution,
it can be shown that the central confidence interval is of the shortest length.

Example 17.2. Let X1, X2, ..., X11 be a random sample of size 11 from
a normal distribution with unknown mean µ and variance σ2 = 9.9. If∑11

i=1 xi = 132, then what is the 95% confidence interval for µ ?

Answer: Since each Xi ∼ N(µ, 9.9), the confidence interval for µ is given
by [

X −
(
σ√
n

)
zα

2
, X +

(
σ√
n

)
zα

2

]
.

Since
∑11

i=1 xi = 132, the sample mean x = 132
11 = 12. Also, we see that

√
σ2

n
=
√

9.9
11

=
√

0.9.

Further, since 1− α = 0.95, α = 0.05. Thus

zα
2

= z0.025 = 1.96 (from normal table).

Using these information in the expression of the confidence interval for µ, we
get [

12− 1.96
√

0.9, 12 + 1.96
√

0.9
]

that is
[10.141, 13.859].
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Example 17.3. Let X1, X2, ..., X11 be a random sample of size 11 from
a normal distribution with unknown mean µ and variance σ2 = 9.9. If∑11

i=1 xi = 132, then for what value of the constant k is

[
12− k

√
0.9, 12 + k

√
0.9
]

a 90% confidence interval for µ ?

Answer: The 90% confidence interval for µ when the variance is given is
[

x−
(
σ√
n

)
zα

2
, x +

(
σ√
n

)
zα

2

]
.

Thus we need to find x,
√

σ2

n and zα
2

corresponding to 1− α = 0.9. Hence

x =
∑11

i=1 xi

11

=
132
11

= 12.
√
σ2

n
=
√

9.9
11

=
√

0.9.

z0.05 = 1.64 (from normal table).

Hence, the confidence interval for µ at 90% confidence level is
[
12− (1.64)

√
0.9, 12 + (1.64)

√
0.9
]
.

Comparing this interval with the given interval, we get

k = 1.64.

and the corresponding 90% confidence interval is [10.444, 13.556].

Remark 17.3. Notice that the length of the 90% confidence interval for µ

is 3.112. However, the length of the 95% confidence interval is 3.718. Thus
higher the confidence level bigger is the length of the confidence interval.
Hence, the confidence level is directly proportional to the length of the confi-
dence interval. In view of this fact, we see that if the confidence level is zero,
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then the length is also zero. That is when the confidence level is zero, the
confidence interval of µ degenerates into a point X.

Until now we have considered the case when the population is normal
with unknown mean µ and known variance σ2. Now we consider the case
when the population is non-normal but its probability density function is
continuous, symmetric and unimodal. If the sample size is large, then by the
central limit theorem

X − µ
σ√
n

∼ N(0, 1) as n →∞.

Thus, in this case we can take the pivotal quantity to be

Q(X1, X2, ..., Xn, µ) =
X − µ

σ√
n

,

if the sample size is large (generally n ≥ 32). Since the pivotal quantity is
same as before, we get the sample expression for the (1−α)100% confidence
interval, that is

[
X −
(
σ√
n

)
zα

2
, X +

(
σ√
n

)
zα

2

]
.

Example 17.4. Let X1, X2, ..., X40 be a random sample of size 40 from
a distribution with known variance and unknown mean µ. If

∑40
i=1 xi =

286.56 and σ2 = 10, then what is the 90 percent confidence interval for the
population mean µ ?

Answer: Since 1 − α = 0.90, we get α
2 = 0.05. Hence, z0.05 = 1.64 (from

the standard normal table). Next, we find the sample mean

x =
286.56

40
= 7.164.

Hence, the confidence interval for µ is given by
[
7.164− (1.64)

(√
10
40

)
, 7.164 + (1.64)

(√
10
40

)]

that is
[6.344, 7.984].
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Example 17.5. In sampling from a nonnormal distribution with a variance
of 25, how large must the sample size be so that the length of a 95% confidence
interval for the mean is 1.96 ?

Answer: The confidence interval when the sample is taken from a normal
population with a variance of 25 is

[
x−
(
σ√
n

)
zα

2
, x +

(
σ√
n

)
zα

2

]
.

Thus the length of the confidence interval is

5 = 2 zα
2

√
σ2

n

= 2 z0.025

√
25
n

= 2 (1.96)
√

25
n

.

But we are given that the length of the confidence interval is 5 = 1.96. Thus

1.96 = 2 (1.96)
√

25
n√

n = 10

n = 100.

Hence, the sample size must be 100 so that the length of the 95% confidence
interval will be 1.96.

So far, we have discussed the method of construction of confidence in-
terval for the parameter population mean when the variance is known. It is
very unlikely that one will know the variance without knowing the popula-
tion mean, and thus what we have treated so far in this section is not very
realistic. Now we treat case of constructing the confidence interval for pop-
ulation mean when the population variance is also unknown. First of all, we
begin with the construction of confidence interval assuming the population
X is normal.

Suppose X1, X2, ..., Xn is random sample from a normal population X

with mean µ and variance σ2 > 0. Let the sample mean and sample variances
be X and S2 respectively. Then

(n− 1)S2

σ2
∼ χ2(n− 1)
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and
X − µ√

σ2

n

∼ N(0, 1).

Therefore, the random variable defined by the ratio of (n−1)S2

σ2 to X−µ√
σ2
n

has

a t-distribution with (n− 1) degrees of freedom, that is

Q(X1, X2, ..., Xn, µ) =

X−µ√
σ2
n√

(n−1)S2

(n−1)σ2

=
X − µ√

S2

n

∼ t(n− 1),

where Q is the pivotal quantity to be used for the construction of the confi-
dence interval for µ. Using this pivotal quantity, we construct the confidence
interval as follows:

1− α = P

(
−tα

2
(n− 1) ≤ X − µ

S√
n

≤ tα
2
(n− 1)

)

= P

(
X −
(

S√
n

)
tα

2
(n− 1) ≤ µ ≤ X +

(
S√
n

)
tα

2
(n− 1)

)

Hence, the 100(1 − α)% confidence interval for µ when the population X is
normal with the unknown variance σ2 is given by

[
X −
(

S√
n

)
tα

2
(n− 1) , X +

(
S√
n

)
tα

2
(n− 1)

]
.

Example 17.6. A random sample of 9 observations from a normal popula-
tion yields the observed statistics x = 5 and 1

8

∑9
i=1(xi − x)2 = 36. What is

the 95% confidence interval for µ ?

Answer: Since
n = 9 x = 5

s2 = 36 and 1− α = 0.95,

the 95% confidence interval for µ is given by
[

x−
(

s√
n

)
tα

2
(n− 1) , x +

(
s√
n

)
tα

2
(n− 1)

]
,

that is [
5−
(

6√
9

)
t0.025(8) , 5 +

(
6√
9

)
t0.025(8)

]
,
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which is [
5−
(

6√
9

)
(2.306) , 5 +

(
6√
9

)
(2.306)

]
.

Hence, the 95% confidence interval for µ is given by [0.388, 9.612].

Example 17.7. Which of the following is true of a 95% confidence interval
for the mean of a population?

(a) The interval includes 95% of the population values on the average.
(b) The interval includes 95% of the sample values on the average.
(c) The interval has 95% chance of including the sample mean.

Answer: None of the statements is correct since the 95% confidence inter-
val for the population mean µ means that the interval has 95% chance of
including the population mean µ.

Finally, we consider the case when the population is non-normal but
it probability density function is continuous, symmetric and unimodal. If
some weak conditions are satisfied, then the sample variance S2 of a random
sample of size n ≥ 2, converges stochastically to σ2. Therefore, in

X−µ√
σ2
n√

(n−1)S2

(n−1)σ2

=
X − µ√

S2

n

the numerator of the left-hand member converges to N(0, 1) and the denom-
inator of that member converges to 1. Hence

X − µ√
S2

n

∼ N(0, 1) as n →∞.

This fact can be used for the construction of a confidence interval for pop-
ulation mean when variance is unknown and the population distribution is
nonnormal. We let the pivotal quantity to be

Q(X1, X2, ..., Xn, µ) =
X − µ√

S2

n

and obtain the following confidence interval
[

X −
(

S√
n

)
zα

2
, X +

(
S√
n

)
zα

2

]
.
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We summarize the results of this section by the following table.

Population Variance σ2 Sample Size n Confidence Limits
normal known n ≥ 2 x∓ zα

2
σ√
n

normal not known n ≥ 2 x∓ tα
2
(n− 1) s√

n

not normal known n ≥ 32 x∓ zα
2

σ√
n

not normal known n < 32 no formula exists
not normal not known n ≥ 32 x∓ tα

2
(n− 1) s√

n

not normal not known n < 32 no formula exists

17.4. Confidence Interval for Population Variance

In this section, we will first describe the method for constructing the
confidence interval for variance when the population is normal with a known
population mean µ. Then we treat the case when the population mean is
also unknown.

Let X1, X2, ..., Xn be a random sample from a normal population X

with known mean µ and unknown variance σ2. We would like to construct
a 100(1− α)% confidence interval for the variance σ2, that is, we would like
to find the estimate of L and U such that

P
(
L ≤ σ2 ≤ U

)
= 1− α.

To find these estimate of L and U , we first construct a pivotal quantity. Thus

Xi ∼ N
(
µ, σ2
)
,

(
Xi − µ

σ

)
∼ N(0, 1),

(
Xi − µ

σ

)2

∼ χ2(1).

n∑

i=1

(
Xi − µ

σ

)2

∼ χ2(n).

We define the pivotal quantity Q(X1, X2, ..., Xn, σ2) as

Q(X1, X2, ..., Xn, σ2) =
n∑

i=1

(
Xi − µ

σ

)2
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which has a chi-square distribution with n degrees of freedom. Hence

1− α = P (a ≤ Q ≤ b)

= P

(
a ≤

n∑

i=1

(
Xi − µ

σ

)2

≤ b

)

= P

(
1
a
≥

n∑

i=1

σ2

(Xi − µ)2
≥ 1

b

)

= P

(∑n
i=1(Xi − µ)2

a
≥ σ2 ≥

∑n
i=1(Xi − µ)2

b

)

= P

(∑n
i=1(Xi − µ)2

b
≤ σ2 ≤

∑n
i=1(Xi − µ)2

a

)

= P

(∑n
i=1(Xi − µ)2

χ2
1−α

2
(n)

≤ σ2 ≤
∑n

i=1(Xi − µ)2

χ2
α
2
(n)

)

Therefore, the (1 − α)% confidence interval for σ2 when mean is known is
given by [∑n

i=1(Xi − µ)2

χ2
1−α

2
(n)

,

∑n
i=1(Xi − µ)2

χ2
α
2
(n)

]
.

Example 17.8. A random sample of 9 observations from a normal pop-
ulation with µ = 5 yields the observed statistics 1

8

∑9
i=1 x2

i = 39.125 and∑9
i=1 xi = 45. What is the 95% confidence interval for σ2 ?

Answer: We have been given that

n = 9 and µ = 5.

Further we know that
9∑

i=1

xi = 45 and
1
8

9∑

i=1

x2
i = 39.125.

Hence
9∑

i=1

x2
i = 313,

and
9∑

i=1

(xi − µ)2 =
9∑

i=1

x2
i − 2µ

9∑

i=1

xi + 9µ2

= 313− 450 + 225

= 88.
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Since 1 − α = 0.95, we get α
2 = 0.025 and 1 − α

2 = 0.975. Using chi-square
table we have

χ2
0.025(9) = 2.700 and χ2

0.975(9) = 19.02.

Hence, the 95% confidence interval for σ2 is given by
[∑n

i=1(Xi − µ)2

χ2
1−α

2
(n)

,

∑n
i=1(Xi − µ)2

χ2
α
2
(n)

]
,

that is [
88

19.02
,

88
2.7

]

which is
[4.63, 32.59].

Remark 17.4. Since the χ2 distribution is not symmetric, the above confi-
dence interval is not necessarily the shortest. Later, in the next section, we
describe how one construct a confidence interval of shortest length.

Consider a random sample X1, X2, ..., Xn from a normal population
X ∼ N(µ, σ2), where the population mean µ and population variance σ2

are unknown. We want to construct a 100(1 − α)% confidence interval for
the population variance. We know that

(n− 1)S2

σ2
∼ χ2(n− 1)

⇒
∑n

i=1

(
Xi −X

)2

σ2
∼ χ2(n− 1).

We take
∑n

i=1(Xi−X)2

σ2 as the pivotal quantity Q to construct the confidence
interval for σ2. Hence, we have

1− α = P

(
1

χ2
α
2
(n− 1)

≤ Q ≤ 1
χ2

1−α
2
(n− 1)

)

= P

(
1

χ2
α
2
(n− 1)

≤
∑n

i=1

(
Xi −X

)2

σ2
≤ 1
χ2

1−α
2
(n− 1)

)

= P

(∑n
i=1

(
Xi −X

)2

χ2
1−α

2
(n− 1)

≤ σ2 ≤
∑n

i=1

(
Xi −X

)2

χ2
α
2
(n− 1)

)
.
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Hence, the 100(1 − α)% confidence interval for variance σ2 when the popu-
lation mean is unknown is given by

[∑n
i=1

(
Xi −X

)2

χ2
1−α

2
(n− 1)

,

∑n
i=1

(
Xi −X

)2

χ2
α
2
(n− 1)

]

Example 17.9. Let X1, X2, ..., Xn be a random sample of size 13 from a
normal distribution N(µ, σ2). If

∑13
i=1 xi = 246.61 and

∑13
i=1 x2

i = 4806.61.
Find the 90% confidence interval for σ2 ?

Answer:
x = 18.97

s2 =
1

n− 1

13∑

i=1

(xi − x)2

=
1

n− 1

13∑

i=1

[
x2

i − nx2
]2

=
1
12

[4806.61− 4678.2]

=
1
12

128.41.

Hence, 12s2 = 128.41. Further, since 1 − α = 0.90, we get α
2 = 0.05 and

1− α
2 = 0.95. Therefore, from chi-square table, we get

χ2
0.95(12) = 21.03, χ2

0.05(12) = 5.23.

Hence, the 95% confidence interval for σ2 is
[
128.41
21.03

,
128.41
5.23

]
,

that is
[6.11, 24.55].

Example 17.10. Let X1, X2, ..., Xn be a random sample of size n from a
distribution N

(
µ, σ2
)
, where µ and σ2 are unknown parameters. What is

the shortest 90% confidence interval for the standard deviation σ ?

Answer: Let S2 be the sample variance. Then

(n− 1)S2

σ2
∼ χ2(n− 1).



Probability and Mathematical Statistics 507

Using this random variable as a pivot, we can construct a 100(1− α)% con-
fidence interval for σ from

1− α = P

(
a ≤ (n− 1)S2

σ2
≤ b

)

by suitably choosing the constants a and b. Hence, the confidence interval
for σ is given by [√

(n− 1)S2

b
,

√
(n− 1)S2

a

]
.

The length of this confidence interval is given by

L(a, b) = S
√

n− 1
[

1√
a
− 1√

b

]
.

In order to find the shortest confidence interval, we should find a pair of
constants a and b such that L(a, b) is minimum. Thus, we have a constraint
minimization problem. That is

Minimize L(a, b)

Subject to the condition
∫ b

a
f(u)du = 1− α,





(MP)

where
f(x) =

1
Γ
(

n−1
2

)
2

n−1
2

x
n−1

2 −1 e−
x
2 .

Differentiating L with respect to a, we get

dL

da
= S

√
n− 1
(
−1

2
a− 3

2 +
1
2
b−

3
2

db

da

)
.

From ∫ b

a
f(u) du = 1− α,

we find the derivative of b with respect to a as follows:

d

da

∫ b

a
f(u) du =

d

da
(1− α)

that is
f(b)

db

da
− f(a) = 0.
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Thus, we have
db

da
=

f(a)
f(b)

.

Letting this into the expression for the derivative of L, we get

dL

da
= S

√
n− 1
(
−1

2
a− 3

2 +
1
2
b−

3
2

f(a)
f(b)

)
.

Setting this derivative to zero, we get

S
√

n− 1
(
−1

2
a− 3

2 +
1
2
b−

3
2

f(a)
f(b)

)
= 0

which yields
a

3
2 f(a) = b

3
2 f(b).

Using the form of f , we get from the above expression

a
3
2 a

n−3
2 e−

a
2 = b

3
2 b

n−3
2 e−

b
2

that is
a

n
2 e−

a
2 = b

n
2 e−

b
2 .

From this we get

ln
(a

b

)
=
(

a− b

n

)
.

Hence to obtain the pair of constants a and b that will produce the shortest
confidence interval for σ, we have to solve the following system of nonlinear
equations ∫ b

a
f(u) du = 1− α

ln
(a

b

)
=

a− b

n
.





(/)

If ao and bo are solutions of (/), then the shortest confidence interval for σ
is given by 


√

(n− 1)S2

bo
,

√
(n− 1)S2

ao



 .

Since this system of nonlinear equations is hard to solve analytically, nu-
merical solutions are given in statistical literature in the form of a table for
finding the shortest interval for the variance.
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17.5. Confidence Interval for Parameter of some Distributions
not belonging to the Location-Scale Family

In this section, we illustrate the pivotal quantity method for finding
confidence intervals for a parameter θ when the density function does not
belong to the location-scale family. The following density functions does not
belong to the location-scale family:

f(x; θ) =






θxθ−1 if 0 < x < 1

0 otherwise,

or

f(x; θ) =

{ 1
θ if 0 < x < θ

0 otherwise.
We will construct interval estimators for the parameters in these density

functions. The same idea for finding the interval estimators can be used to
find interval estimators for parameters of density functions that belong to
the location-scale family such as

f(x; θ) =

{ 1
θ e−

x
θ if 0 < x <∞

0 otherwise.

To find the pivotal quantities for the above mentioned distributions and
others we need the following three results. The first result is Theorem 6.2
while the proof of the second result is easy and we leave it to the reader.

Theorem 17.1. Let F (x; θ) be the cumulative distribution function of a
continuous random variable X. Then

F (X; θ) ∼ UNIF (0, 1).

Theorem 17.2. If X ∼ UNIF (0, 1), then

− lnX ∼ EXP (1).

Theorem 17.3. Let X1, X2, ..., Xn be a random sample from a distribution
with density function

f(x; θ) =






1
θ e−

x
θ if 0 < x <∞

0 otherwise,
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where θ > 0 is a parameter. Then the random variable

2
θ

n∑

i=1

Xi ∼ χ2(2n)

Proof: Let Y = 2
θ

∑n
i=1 Xi. Now we show that the sampling distribution of

Y is chi-square with 2n degrees of freedom. We use the moment generating
method to show this. The moment generating function of Y is given by

MY (t) = M
2
θ

n∑

i=1

Xi

(t)

=
n∏

i=1

MXi

(
2
θ
t

)

=
n∏

i=1

(
1− θ 2

θ
t

)−1

= (1− 2t)−n

= (1− 2t)−
2n
2 .

Since (1− 2t)−
2n
2 corresponds to the moment generating function of a chi-

square random variable with 2n degrees of freedom, we conclude that

2
θ

n∑

i=1

Xi ∼ χ2(2n).

Theorem 17.4. Let X1, X2, ..., Xn be a random sample from a distribution
with density function

f(x; θ) =






θxθ−1 if 0 ≤ x ≤ 1

0 otherwise,

where θ > 0 is a parameter. Then the random variable −2θ
∑n

i=1 lnXi has
a chi-square distribution with 2n degree of freedoms.

Proof: We are given that

Xi ∼ θ xθ−1, 0 < x < 1.
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Hence, the cdf of f is

F (x; θ) =
∫ x

0
θ xθ−1dx = xθ.

Thus by Theorem 17.1, each

F (Xi; θ) ∼ UNIF (0, 1),

that is
Xθ

i ∼ UNIF (0, 1).

By Theorem 17.2, each
− lnXθ

i ∼ EXP (1),

that is
−θ lnXi ∼ EXP (1).

By Theorem 17.3 (with θ = 1), we obtain

−2 θ
n∑

i=1

lnXi ∼ χ2(2n).

Hence, the sampling distribution of −2 θ
∑n

i=1 lnXi is chi-square with 2n

degree of freedoms.

The following theorem whose proof follows from Theorems 17.1, 17.2 and
17.3 is the key to finding pivotal quantity of many distributions that do not
belong to the location-scale family. Further, this theorem can also be used
for finding the pivotal quantities for parameters of some distributions that
belong the location-scale family.

Theorem 17.5. Let X1, X2, ..., Xn be a random sample from a continuous
population X with a distribution function F (x; θ). If F (x; θ) is monotone in
θ, then the statistic Q = −2

∑n
i=1 lnF (Xi; θ) is a pivotal quantity and has

a chi-square distribution with 2n degrees of freedom (that is, Q ∼ χ2(2n)).

It should be noted that the condition F (x; θ) is monotone in θ is needed
to ensure an interval. Otherwise we may get a confidence region instead of a
confidence interval. Further note that the statistic −2

∑n
i=1 ln (1− F (Xi; θ))

is also has a chi-square distribution with 2n degrees of freedom, that is

−2
n∑

i=1

ln (1− F (Xi; θ)) ∼ χ2(2n).
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Example 17.11. If X1, X2, ..., Xn is a random sample from a population
with density

f(x; θ) =






θxθ−1 if 0 < x < 1

0 otherwise,

where θ > 0 is an unknown parameter, what is a 100(1 − α)% confidence
interval for θ?

Answer: To construct a confidence interval for θ, we need a pivotal quantity.
That is, we need a random variable which is a function of the sample and the
parameter, and whose probability distribution is known but does not involve
θ. We use the random variable

Q = −2 θ
n∑

i=1

lnXi ∼ χ2(2n)

as the pivotal quantity. The 100(1 − α)% confidence interval for θ can be
constructed from

1− α = P
(
χ2
α
2
(2n) ≤ Q ≤ χ2

1−α
2
(2n)
)

= P

(
χ2
α
2
(2n) ≤ −2 θ

n∑

i=1

lnXi ≤ χ2
1−α

2
(2n)

)

= P





χ2
α
2
(2n)

−2
n∑

i=1

lnXi

≤ θ ≤
χ2

1−α
2
(2n)

−2
n∑

i=1

lnXi




.

Hence, 100(1− α)% confidence interval for θ is given by




χ2
α
2
(2n)

−2
n∑

i=1

lnXi

,
χ2

1−α
2
(2n)

−2
n∑

i=1

lnXi




.

Here χ2
1−α

2
(2n) denotes the

(
1− α

2

)
-quantile of a chi-square random variable

Y , that is
P (Y ≤ χ2

1−α
2
(2n)) = 1− α

2
and χ2

α
2
(2n) similarly denotes α

2 -quantile of Y , that is

P
(
Y ≤ χ2

α
2
(2n)
)

=
α

2
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for α ≤ 0.5 (see figure below).

Example 17.12. If X1, X2, ..., Xn is a random sample from a distribution
with density function

f(x; θ) =






1
θ if 0 < x < θ

0 otherwise,

where θ > 0 is a parameter, then what is the 100(1−α)% confidence interval
for θ?

Answer: The cumulation density function of f(x; θ) is

F (x; θ) =

{ x
θ if 0 < x < θ

0 otherwise.

Since

−2
n∑

i=1

lnF (Xi; θ) = −2
n∑

i=1

ln
(

Xi

θ

)

= 2n ln θ − 2
n∑

i=1

lnXi

by Theorem 17.5, the quantity 2n ln θ − 2
∑n

i=1 lnXi ∼ χ2(2n). Since
2n ln θ − 2

∑n
i=1 lnXi is a function of the sample and the parameter and

its distribution is independent of θ, it is a pivot for θ. Hence, we take

Q(X1, X2, ..., Xn, θ) = 2n ln θ − 2
n∑

i=1

lnXi.
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The 100(1− α)% confidence interval for θ can be constructed from

1− α = P
(
χ2
α
2
(2n) ≤ Q ≤ χ2

1−α
2
(2n)
)

= P

(
χ2
α
2
(2n) ≤ 2n ln θ − 2

n∑

i=1

lnXi ≤ χ2
1−α

2
(2n)

)

= P

(
χ2
α
2
(2n) + 2

n∑

i=1

lnXi ≤ 2n ln θ ≤ χ2
1−α

2
(2n) + 2

n∑

i=1

lnXi

)

= P

(
e

1
2n

{
χ2
α
2

(2n)+2
∑n

i=1
ln Xi

}

≤ θ ≤ e
1
2n

{
χ2

1−α
2

(2n)+2
∑n

i=1
ln Xi

})
.

Hence, 100(1− α)% confidence interval for θ is given by



e

1
2n

{
χ2
α
2

(2n)+2

n∑

i=1

lnXi

}

, e

1
2n

{
χ2

1−α
2

(2n)+2

n∑

i=1

lnXi

} 


.

The density function of the following example belongs to the scale family.
However, one can use Theorem 17.5 to find a pivot for the parameter and
determine the interval estimators for the parameter.

Example 17.13. If X1, X2, ..., Xn is a random sample from a distribution
with density function

f(x; θ) =






1
θ e−

x
θ if 0 < x <∞

0 otherwise,

where θ > 0 is a parameter, then what is the 100(1−α)% confidence interval
for θ?

Answer: The cumulative density function F (x; θ) of the density function

f(x; θ) =

{ 1
θ e−

x
θ if 0 < x <∞

0 otherwise

is given by
F (x; θ) = 1− e−

x
θ .

Hence

−2
n∑

i=1

ln (1− F (Xi; θ)) =
2
θ

n∑

i=1

Xi.
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Thus
2
θ

n∑

i=1

Xi ∼ χ2(2n).

We take Q = 2
θ

n∑

i=1

Xi as the pivotal quantity. The 100(1 − α)% confidence

interval for θ can be constructed using

1− α = P
(
χ2
α
2
(2n) ≤ Q ≤ χ2

1−α
2
(2n)
)

= P

(
χ2
α
2
(2n) ≤ 2

θ

n∑

i=1

Xi ≤ χ2
1−α

2
(2n)

)

= P





2
n∑

i=1

Xi

χ2
1−α

2
(2n)

≤ θ ≤
2

n∑

i=1

Xi

χ2
α
2
(2n)




.

Hence, 100(1− α)% confidence interval for θ is given by




2
n∑

i=1

Xi

χ2
1−α

2
(2n)

,

2
n∑

i=1

Xi

χ2
α
2
(2n)




.

In this section, we have seen that 100(1−α)% confidence interval for the
parameter θ can be constructed by taking the pivotal quantity Q to be either

Q = −2
n∑

i=1

lnF (Xi; θ)

or

Q = −2
n∑

i=1

ln (1− F (Xi; θ)) .

In either case, the distribution of Q is chi-squared with 2n degrees of freedom,
that is Q ∼ χ2(2n). Since chi-squared distribution is not symmetric about
the y-axis, the confidence intervals constructed in this section do not have
the shortest length. In order to have a shortest confidence interval one has
to solve the following minimization problem:

Minimize L(a, b)

Subject to the condition
∫ b

a
f(u)du = 1− α,





(MP)
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where
f(x) =

1
Γ
(

n−1
2

)
2

n−1
2

x
n−1

2 −1e−
x
2 .

In the case of Example 17.13, the minimization process leads to the following
system of nonlinear equations

∫ b

a
f(u) du = 1− α

ln
(a

b

)
=

a− b

2(n + 1)
.





(NE)

If ao and bo are solutions of (NE), then the shortest confidence interval for θ
is given by [

2
∑n

i=1Xi

bo
,

2
∑n

i=1Xi

ao

]
.

17.6. Approximate Confidence Interval for Parameter with MLE

In this section, we discuss how to construct an approximate (1−α)100%
confidence interval for a population parameter θ using its maximum likelihood
estimator θ̂. Let X1, X2, ..., Xn be a random sample from a population X

with density f(x; θ). Let θ̂ be the maximum likelihood estimator of θ. If
the sample size n is large, then using asymptotic property of the maximum
likelihood estimator, we have

θ̂ − E
(
θ̂
)

√
V ar
(
θ̂
) ∼ N(0, 1) as n →∞,

where V ar
(
θ̂
)

denotes the variance of the estimator θ̂. Since, for large n,
the maximum likelihood estimator of θ is unbiased, we get

θ̂ − θ√
V ar
(
θ̂
) ∼ N(0, 1) as n →∞.

The variance V ar
(
θ̂
)

can be computed directly whenever possible or using
the Cramér-Rao lower bound

V ar
(
θ̂
)
≥ −1

E
[

d2 ln L(θ)
dθ2

] .



Probability and Mathematical Statistics 517

Now using Q = θ̂−θ√
V ar
(
θ̂
) as the pivotal quantity, we construct an approxi-

mate (1− α)100% confidence interval for θ as

1− α = P
(
−zα

2
≤ Q ≤ zα

2

)

= P



−zα
2
≤ θ̂ − θ√

V ar
(
θ̂
) ≤ zα

2



 .

If V ar
(
θ̂
)

is free of θ, then have

1− α = P

(
θ̂ − zα

2

√
V ar
(
θ̂
)
≤ θ ≤ θ̂ + zα

2

√
V ar
(
θ̂
))

.

Thus 100(1− α)% approximate confidence interval for θ is

[
θ̂ − zα

2

√
V ar
(
θ̂
)
, θ̂ + zα

2

√
V ar
(
θ̂
)]

provided V ar
(
θ̂
)

is free of θ.

Remark 17.5. In many situations V ar
(
θ̂
)

is not free of the parameter θ.
In those situations we still use the above form of the confidence interval by
replacing the parameter θ by θ̂ in the expression of V ar

(
θ̂
)
.

Next, we give some examples to illustrate this method.

Example 17.14. Let X1, X2, ..., Xn be a random sample from a population
X with probability density function

f(x; p) =

{
px (1− p)(1−x) if x = 0, 1

0 otherwise.

What is a 100(1−α)% approximate confidence interval for the parameter p?

Answer: The likelihood function of the sample is given by

L(p) =
n∏

i=1

pxi (1− p)(1−xi).
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Taking the logarithm of the likelihood function, we get

lnL(p) =
n∑

i=1

[xi ln p + (1− xi) ln(1− p)] .

Differentiating, the above expression, we get

d lnL(p)
dp

=
1
p

n∑

i=1

xi −
1

1− p

n∑

i=1

(1− xi).

Setting this equals to zero and solving for p, we get

nx

p
− n− nx

1− p
= 0,

that is
(1− p) n x = p (n− n x),

which is
n x− p n x = p n− p n x.

Hence
p = x.

Therefore, the maximum likelihood estimator of p is given by

p̂ = X.

The variance of X is
V ar
(
X
)

=
σ2

n
.

Since X ∼ Ber(p), the variance σ2 = p(1− p), and

V ar (p̂) = V ar
(
X
)

=
p(1− p)

n
.

Since V ar (p̂) is not free of the parameter p, we replave p by p̂ in the expression
of V ar (p̂) to get

V ar (p̂) 7 p̂ (1− p̂)
n

.

The 100(1−α)% approximate confidence interval for the parameter p is given
by [

p̂− zα
2

√
p̂ (1− p̂)

n
, p̂ + zα

2

√
p̂ (1− p̂)

n

]
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which is 

X − zα
2

√
X (1−X)

n
, X + zα

2

√
X (1−X)

n



 .

The above confidence interval is a 100(1 − α)% approximate confidence
interval for proportion.

Example 17.15. A poll was taken of university students before a student
election. Of 78 students contacted, 33 said they would vote for Mr. Smith.
The population may be taken as 2200. Obtain 95% confidence limits for the
proportion of voters in the population in favor of Mr. Smith.

Answer: The sample proportion p̂ is given by

p̂ =
33
78

= 0.4231.

Hence √
p̂ (1− p̂)

n
=

√
(0.4231) (0.5769)

78
= 0.0559.

The 2.5th percentile of normal distribution is given by

z0.025 = 1.96 (From table).

Hence, the lower confidence limit of 95% confidence interval is

p̂− zα
2

√
p̂ (1− p̂)

n
= 0.4231− (1.96) (0.0559)

= 0.4231− 0.1096

= 0.3135.

Similarly, the upper confidence limit of 95% confidence interval is

p̂ + zα
2

√
p̂ (1− p̂)

n
= 0.4231 + (1.96) (0.0559)

= 0.4231 + 0.1096

= 0.5327.

Hence, the 95% confidence limits for the proportion of voters in the popula-
tion in favor of Smith are 0.3135 and 0.5327.
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Remark 17.6. In Example 17.15, the 95% percent approximate confidence
interval for the parameter p was [0.3135, 0.5327]. This confidence interval can
be improved to a shorter interval by means of a quadratic inequality. Now
we explain how the interval can be improved. First note that in Example
17.14, which we are using for Example 17.15, the approximate value of the

variance of the ML estimator p̂ was obtained to be
√

p(1−p)
n . However, this

is the exact variance of p̂. Now the pivotal quantity Q = p̂−p√
V ar(p̂)

becomes

Q =
p̂− p√
p(1−p)

n

.

Using this pivotal quantity, we can construct a 95% confidence interval as

0.05 = P



− z0.025 ≤
p̂− p√
p(1−p)

n

≤ z0.025





= P





∣∣∣∣∣∣
p̂− p√
p(1−p)

n

∣∣∣∣∣∣
≤ 1.96



 .

Using p̂ = 0.4231 and n = 78, we solve the inequality
∣∣∣∣∣∣

p̂− p√
p(1−p)

n

∣∣∣∣∣∣
≤ 1.96

which is ∣∣∣∣∣∣
0.4231− p√

p(1−p)
78

∣∣∣∣∣∣
≤ 1.96.

Squaring both sides of the above inequality and simplifying, we get

78 (0.4231− p)2 ≤ (1.96)2 (p− p2).

The last inequality is equivalent to

13.96306158− 69.84520000 p + 81.84160000 p2 ≤ 0.

Solving this quadratic inequality, we obtain [0.3196, 0.5338] as a 95% confi-
dence interval for p. This interval is an improvement since its length is 0.2142
where as the length of the interval [0.3135, 0.5327] is 0.2192.
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Example 17.16. If X1, X2, ..., Xn is a random sample from a population
with density

f(x; θ) =






θ xθ−1 if 0 < x < 1

0 otherwise,

where θ > 0 is an unknown parameter, what is a 100(1 − α)% approximate
confidence interval for θ if the sample size is large?

Answer: The likelihood function L(θ) of the sample is

L(θ) =
n∏

i=1

θ xθ−1
i .

Hence

lnL(θ) = n ln θ + (θ − 1)
n∑

i=1

lnxi.

The first derivative of the logarithm of the likelihood function is

d

dθ
lnL(θ) =

n

θ
+

n∑

i=1

lnxi.

Setting this derivative to zero and solving for θ, we obtain

θ = − n∑n
i=1 lnxi

.

Hence, the maximum likelihood estimator of θ is given by

θ̂ = − n∑n
i=1 lnXi

.

Finding the variance of this estimator is difficult. We compute its variance by
computing the Cramér-Rao bound for this estimator. The second derivative
of the logarithm of the likelihood function is given by

d2

dθ2
lnL(θ) =

d

dθ

(
n

θ
+

n∑

i=1

lnxi

)

= − n

θ2
.

Hence
E

(
d2

dθ2
lnL(θ)

)
= − n

θ2
.
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Therefore
V ar
(
θ̂
)
≥ θ

n
.

Thus we take
V ar
(
θ̂
)
7 θ

n
.

Since V ar
(
θ̂
)

has θ in its expression, we replace the unknown θ by its

estimate θ̂ so that

V ar
(
θ̂
)
7 θ̂

2

n
.

The 100(1− α)% approximate confidence interval for θ is given by
[
θ̂ − zα

2

θ̂√
n

, θ̂ + zα
2

θ̂√
n

]
,

which is
[
− n∑n

i=1 lnXi
+ zα

2

( √
n∑n

i=1 lnXi

)
, − n∑n

i=1 lnXi
− zα

2

( √
n∑n

i=1 lnXi

)]
.

Remark 17.7. In the next section 17.2, we derived the exact confidence
interval for θ when the population distribution in exponential. The exact
100(1− α)% confidence interval for θ was given by

[
−

χ2
α
2
(2n)

2
∑n

i=1 lnXi
, −

χ2
1−α

2
(2n)

2
∑n

i=1 lnXi

]
.

Note that this exact confidence interval is not the shortest confidence interval
for the parameter θ.

Example 17.17. If X1, X2, ..., X49 is a random sample from a population
with density

f(x; θ) =






θ xθ−1 if 0 < x < 1

0 otherwise,
where θ > 0 is an unknown parameter, what are 90% approximate and exact
confidence intervals for θ if

∑49
i=1 lnXi = −0.7567?

Answer: We are given the followings:

n = 49
49∑

i=1

lnXi = −0.7576

1− α = 0.90.
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Hence, we get
z0.05 = 1.64,

n∑n
i=1 lnXi

=
49

−0.7567
= −64.75

and √
n∑n

i=1 lnXi
=

7
−0.7567

= −9.25.

Hence, the approximate confidence interval is given by

[64.75− (1.64)(9.25), 64.75 + (1.64)(9.25)]

that is [49.58, 79.92].
Next, we compute the exact 90% confidence interval for θ using the

formula [
−

χ2
α
2
(2n)

2
∑n

i=1 lnXi
, −

χ2
1−α

2
(2n)

2
∑n

i=1 lnXi

]
.

From chi-square table, we get

χ2
0.05(98) = 77.93 and χ2

0.95(98) = 124.34.

Hence, the exact 90% confidence interval is
[

77.93
(2)(0.7567)

,
124.34

(2)(0.7567)

]

that is [51.49, 82.16].

Example 17.18. If X1, X2, ..., Xn is a random sample from a population
with density

f(x; θ) =






(1− θ) θx if x = 0, 1, 2, ...,∞

0 otherwise,

where 0 < θ < 1 is an unknown parameter, what is a 100(1−α)% approximate
confidence interval for θ if the sample size is large?

Answer: The logarithm of the likelihood function of the sample is

lnL(θ) = ln θ
n∑

i=1

xi + n ln(1− θ).
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Differentiating we see obtain

d

dθ
lnL(θ) =

∑n
i=1 xi

θ
− n

1− θ .

Equating this derivative to zero and solving for θ, we get θ = x
1+x . Thus, the

maximum likelihood estimator of θ is given by

θ̂ =
X

1 + X
.

Next, we find the variance of this estimator using the Cramér-Rao lower
bound. For this, we need the second derivative of lnL(θ). Hence

d2

dθ2
lnL(θ) = −nx

θ2
− n

(1− θ)2 .

Therefore

E

(
d2

dθ2
lnL(θ)

)

= E

(
−nX

θ2
− n

(1− θ)2

)

=
n

θ2
E
(
X
)
− n

(1− θ)2

=
n

θ2
1

(1− θ) −
n

(1− θ)2 (since each Xi ∼ GEO(1− θ))

= − n

θ(1− θ)

[
1
θ

+
θ

1− θ

]

= −n (1− θ + θ2)
θ2 (1− θ)2 .

Therefore

V ar
(
θ̂
)
7
θ̂2
(
1− θ̂
)2

n
(
1− θ̂ + θ̂2

) .

The 100(1− α)% approximate confidence interval for θ is given by


θ̂ − zα
2

θ̂
(
1− θ̂
)

√
n
(
1− θ̂ + θ̂2

) , θ̂ + zα
2

θ̂
(
1− θ̂
)

√
n
(
1− θ̂ + θ̂2

)



 ,
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where

θ̂ =
X

1 + X
.

17.7. The Statistical or General Method

Now we briefly describe the statistical or general method for constructing
a confidence interval. Let X1, X2, ..., Xn be a random sample from a pop-
ulation with density f(x; θ), where θ is a unknown parameter. We want to
determine an interval estimator for θ. Let T (X1, X2, ..., Xn) be some statis-
tics having the density function g(t; θ). Let p1 and p2 be two fixed positive
number in the open interval (0, 1) with p1 + p2 < 1. Now we define two
functions h1(θ) and h2(θ) as follows:

p1 =
∫ h1(θ)

−∞
g(t; θ) dt and p2 =

∫ h2(θ)

−∞
g(t; θ) dt

such that

P (h1(θ) < T (X1, X2, ..., Xn) < h2(θ)) = 1− p1 − p2.

If h1(θ) and h2(θ) are monotone functions in θ, then we can find a confidence
interval

P (u1 < θ < u2) = 1− p1 − p2

where u1 = u1(t) and u2 = u2(t). The statistics T (X1, X2, ..., Xn) may be a
sufficient statistics, or a maximum likelihood estimator. If we minimize the
length u2−u1 of the confidence interval, subject to the condition 1−p1−p2 =
1− α for 0 < α < 1, we obtain the shortest confidence interval based on the
statistics T .

17.8. Criteria for Evaluating Confidence Intervals

In many situations, one can have more than one confidence intervals for
the same parameter θ. Thus it necessary to have a set of criteria to decide
whether a particular interval is better than the other intervals. Some well
known criteria are: (1) Shortest Length and (2) Unbiasedness. Now we only
briefly describe these criteria.

The criterion of shortest length demands that a good 100(1− α)% con-
fidence interval [L, U ] of a parameter θ should have the shortest length
5 = U−L. In the pivotal quantity method one finds a pivot Q for a parameter
θ and then converting the probability statement

P (a < Q < b) = 1− α
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to

P (L < θ < U) = 1− α

obtains a 100(1−α)% confidence interval for θ. If the constants a and b can be
found such that the difference U −L depending on the sample X1, X2, ..., Xn

is minimum for every realization of the sample, then the random interval
[L, U ] is said to be the shortest confidence interval based on Q.

If the pivotal quantity Q has certain type of density functions, then one
can easily construct confidence interval of shortest length. The following
result is important in this regard.

Theorem 17.6. Let the density function of the pivot Q ∼ h(q; θ) be continu-
ous and unimodal. If in some interval [a, b] the density function h has a mode,
and satisfies conditions (i)

∫ b
a h(q; θ)dq = 1−α and (ii) h(a) = h(b) > 0, then

the interval [a, b] is of the shortest length among all intervals that satisfy
condition (i).

If the density function is not unimodal, then minimization of 5 is neces-
sary to construct a shortest confidence interval. One of the weakness of this
shortest length criterion is that in some cases, 5 could be a random variable.
Often, the expected length of the interval E(5) = E(U − L) is also used
as a criterion for evaluating the goodness of an interval. However, this too
has weaknesses. A weakness of this criterion is that minimization of E(5)
depends on the unknown true value of the parameter θ. If the sample size
is very large, then every approximate confidence interval constructed using
MLE method has minimum expected length.

A confidence interval is only shortest based on a particular pivot Q. It is
possible to find another pivot Q( which may yield even a shorter interval than
the shortest interval found based on Q. The question naturally arises is how
to find the pivot that gives the shortest confidence interval among all other
pivots. It has been pointed out that a pivotal quantity Q which is a some
function of the complete and sufficient statistics gives shortest confidence
interval.

Unbiasedness, is yet another criterion for judging the goodness of an
interval estimator. The unbiasedness is defined as follow. A 100(1 − α)%
confidence interval [L, U ] of the parameter θ is said to be unbiased if

P (L ≤ θ( ≤ U)

{≥ 1− α if θ( = θ

≤ 1− α if θ( += θ.
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17.9. Review Exercises

1. Let X1, X2, ..., Xn be a random sample from a population with gamma
density function

f(x; θ, β) =






1
Γ(β) θβ xβ−1 e−

x
θ for 0 < x <∞

0 otherwise,

where θ is an unknown parameter and β > 0 is a known parameter. Show
that [

2
∑n

i=1Xi

χ2
1−α

2
(2nβ)

,
2
∑n

i=1Xi

χ2
α
2
(2nβ)

]

is a 100(1− α)% confidence interval for the parameter θ.

2. Let X1, X2, ..., Xn be a random sample from a population with Weibull
density function

f(x; θ, β) =






β
θ xβ−1e−

xβ

θ for 0 < x <∞

0 otherwise,

where θ is an unknown parameter and β > 0 is a known parameter. Show
that [

2
∑n

i=1X
β
i

χ2
1−α

2
(2n)

,
2
∑n

i=1X
β
i

χ2
α
2
(2n)

]

is a 100(1− α)% confidence interval for the parameter θ.

3. Let X1, X2, ..., Xn be a random sample from a population with Pareto
density function

f(x; θ, β) =






θ βθ x−(θ+1) for β ≤ x <∞

0 otherwise,

where θ is an unknown parameter and β > 0 is a known parameter. Show
that 


2
∑n

i=1 ln
(

Xi
β

)

χ2
1−α

2
(2n)

,
2
∑n

i=1 ln
(

Xi
β

)

χ2
α
2
(2n)





is a 100(1− α)% confidence interval for 1
θ .
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4. Let X1, X2, ..., Xn be a random sample from a population with Laplace
density function

f(x; θ) =
1
2θ

e−
|x|
θ , −∞ < x <∞

where θ is an unknown parameter. Show that
[

2
∑n

i=1|Xi|
χ2

1−α
2
(2n)

,
2
∑n

i=1|Xi|
χ2
α
2
(2n)

]

is a 100(1− α)% confidence interval for θ.

5. Let X1, X2, ..., Xn be a random sample from a population with density
function

f(x; θ) =






1
2θ2 x3 e−

x2
2θ for 0 < x <∞

0 otherwise,

where θ is an unknown parameter. Show that
[ ∑n

i=1X
2
i

χ2
1−α

2
(4n)

,

∑n
i=1X

2
i

χ2
α
2
(4n)

]

is a 100(1− α)% confidence interval for θ.

6. Let X1, X2, ..., Xn be a random sample from a population with density
function

f(x; θ, β) =





β θ xβ−1

(1+xβ)θ+1 for 0 < x <∞

0 otherwise,

where θ is an unknown parameter and β > 0 is a known parameter. Show
that 


χ2
α
2
(2n)

2
∑n

i=1 ln
(
1 + Xβ

i

) ,
χ2

1−α
2
(2n)

2
∑n

i=1 ln
(
1 + Xβ

i

)





is a 100(1− α)% confidence interval for θ.

7. Let X1, X2, ..., Xn be a random sample from a population with density
function

f(x; θ) =






e−(x−θ) if θ < x <∞

0 otherwise,
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where θ ∈ IR is an unknown parameter. Then show that Q = X(1) − θ is a
pivotal quantity. Using this pivotal quantity find a 100(1 − α)% confidence
interval for θ.

8. Let X1, X2, ..., Xn be a random sample from a population with density
function

f(x; θ) =






e−(x−θ) if θ < x <∞

0 otherwise,

where θ ∈ IR is an unknown parameter. Then show that Q = 2n
(
X(1) − θ

)
is

a pivotal quantity. Using this pivotal quantity find a 100(1−α)% confidence
interval for θ.

9. Let X1, X2, ..., Xn be a random sample from a population with density
function

f(x; θ) =






e−(x−θ) if θ < x <∞

0 otherwise,

where θ ∈ IR is an unknown parameter. Then show that Q = e−(X(1)−θ) is a
pivotal quantity. Using this pivotal quantity find a 100(1 − α)% confidence
interval for θ.

10. Let X1, X2, ..., Xn be a random sample from a population with uniform
density function

f(x; θ) =






1
θ if 0 ≤ x ≤ θ

0 otherwise,

where 0 < θ is an unknown parameter. Then show that Q = X(n)
θ is a pivotal

quantity. Using this pivotal quantity find a 100(1− α)% confidence interval
for θ.

11. Let X1, X2, ..., Xn be a random sample from a population with uniform
density function

f(x; θ) =






1
θ if 0 ≤ x ≤ θ

0 otherwise,

where 0 < θ is an unknown parameter. Then show that Q = X(n)−X(1)
θ is a

pivotal quantity. Using this pivotal quantity find a 100(1 − α)% confidence
interval for θ.
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12. If X1, X2, ..., Xn is a random sample from a population with density

f(x; θ) =






√
2
π e−

1
2 (x−θ)2 if θ ≤ x <∞

0 otherwise,

where θ is an unknown parameter, what is a 100(1− α)% approximate con-
fidence interval for θ if the sample size is large?

13. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x; θ) =






(θ + 1) x−θ−2 if 1 < x <∞

0 otherwise,

where 0 < θ is a parameter. What is a 100(1− α)% approximate confidence
interval for θ if the sample size is large?

14. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x; θ) =






θ2 x e−θ x if 0 < x <∞

0 otherwise,

where 0 < θ is a parameter. What is a 100(1− α)% approximate confidence
interval for θ if the sample size is large?

15. Let X1, X2, ..., Xn be a random sample from a distribution with density
function

f(x) =






1
β e

−(x−4)
β for x > 4

0 otherwise,

where β > 0. What is a 100(1 − α)% approximate confidence interval for θ
if the sample size is large?

16. Let X1, X2, ..., Xn be a random sample from a distribution with density
function

f(x; θ) =






1
θ for 0 ≤ x ≤ θ

0 otherwise,

where 0 < θ. What is a 100(1−α)% approximate confidence interval for θ if
the sample size is large?
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17. A sample X1, X2, ..., Xn of size n is drawn from a gamma distribution

f(x;β) =






x3 e
− x
β

6β4 if 0 < x <∞

0 otherwise.

What is a 100(1 − α)% approximate confidence interval for θ if the sample
size is large?

18. Let X1, X2, ..., Xn be a random sample from a continuous popu-
lation X with a distribution function F (x; θ). Show that the statistic
Q = −2

∑n
i=1 lnF (Xi; θ) is a pivotal quantity and has a chi-square dis-

tribution with 2n degrees of freedom.

19. Let X1, X2, ..., Xn be a random sample from a continuous popu-
lation X with a distribution function F (x; θ). Show that the statistic
Q = −2

∑n
i=1 ln (1− F (Xi; θ)) is a pivotal quantity and has a chi-square

distribution with 2n degrees of freedom.



Techniques for finding Interval Estimators of Parameters 532



Probability and Mathematical Statistics 533

Chapter 18

TEST OF STATISTICAL
HYPOTHESES

FOR
PARAMETERS

18.1. Introduction

Inferential statistics consists of estimation and hypothesis testing. We
have already discussed various methods of finding point and interval estima-
tors of parameters. We have also examined the goodness of an estimator.

Suppose X1, X2, ..., Xn is a random sample from a population with prob-
ability density function given by

f(x; θ) =






(1 + θ) xθ for 0 < x < 1

0 otherwise,

where θ > 0 is an unknown parameter. Further, let n = 4 and suppose
x1 = 0.92, x2 = 0.75, x3 = 0.85, x4 = 0.8 is a set of random sample data
from the above distribution. If we apply the maximum likelihood method,
then we will find that the estimator θ̂ of θ is

θ̂ = −1− 4
ln(X1) + ln(X2) + ln(X3) + ln(X2)

.

Hence, the maximum likelihood estimate of θ is

θ̂ = −1− 4
ln(0.92) + ln(0.75) + ln(0.85) + ln(0.80)

= −1 +
4

0.7567
= 4.2861
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Therefore, the corresponding probability density function of the population
is given by

f(x) =

{
5.2861 x4.2861 for 0 < x < 1

0 otherwise.
Since, the point estimate will rarely equal to the true value of θ, we would
like to report a range of values with some degree of confidence. If we want
to report an interval of values for θ with a confidence level of 90%, then we
need a 90% confidence interval for θ. If we use the pivotal quantity method,
then we will find that the confidence interval for θ is

[
−1−

χ2
α
2
(8)

2
∑4

i=1 lnXi

, −1−
χ2

1−α
2
(8)

2
∑4

i=1 lnXi

]
.

Since χ2
0.05(8) = 2.73, χ2

0.95(8) = 15.51, and
∑4

i=1 ln(xi) = −0.7567, we
obtain [

−1 +
2.73

2(0.7567)
, −1 +

15.51
2(0.7567)

]

which is
[ 0.803, 9.249 ] .

Thus we may draw inference, at a 90% confidence level, that the population
X has the distribution

f(x; θ) =






(1 + θ) xθ for 0 < x < 1

0 otherwise,
(/)

where θ ∈ [0.803, 9.249]. If we think carefully, we will notice that we have
made one assumption. The assumption is that the observable quantity X can
be modeled by a density function as shown in (/). Since, we are concerned
with the parametric statistics, our assumption is in fact about θ.

Based on the sample data, we found that an interval estimate of θ at a
90% confidence level is [0.803, 9.249]. But, we assumed that θ ∈ [0.803, 9.249].
However, we can not be sure that our assumption regarding the parameter is
real and is not due to the chance in the random sampling process. The vali-
dation of this assumption can be done by the hypothesis test. In this chapter,
we discuss testing of statistical hypotheses. Most of the ideas regarding the
hypothesis test came from Jerry Neyman and Karl Pearson during 1928-1938.

Definition 18.1. A statistical hypothesis H is a conjecture about the dis-
tribution f(x; θ) of a population X. This conjecture is usually about the
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parameter θ if one is dealing with a parametric statistics; otherwise it is
about the form of the distribution of X.

Definition 18.2. A hypothesis H is said to be a simple hypothesis if H

completely specifies the density f(x; θ) of the population; otherwise it is
called a composite hypothesis.

Definition 18.3. The hypothesis to be tested is called the null hypothesis.
The negation of the null hypothesis is called the alternative hypothesis. The
null and alternative hypotheses are denoted by Ho and Ha, respectively.

If θ denotes a population parameter, then the general format of the null
hypothesis and alternative hypothesis is

Ho : θ ∈ Ωo and Ha : θ ∈ Ωa (/)

where Ωo and Ωa are subsets of the parameter space Ω with

Ωo ∩ Ωa = ∅ and Ωo ∪ Ωa ⊆ Ω.

Remark 18.1. If Ωo ∪ Ωa = Ω, then (/) becomes

Ho : θ ∈ Ωo and Ha : θ +∈ Ωo.

If Ωo is a singleton set, then Ho reduces to a simple hypothesis. For
example, Ωo = {4.2861}, the null hypothesis becomes Ho : θ = 4.2861 and the
alternative hypothesis becomes Ha : θ += 4.2861. Hence, the null hypothesis
Ho : θ = 4.2861 is a simple hypothesis and the alternative Ha : θ += 4.2861 is
a composite hypothesis.

Definition 18.4. A hypothesis test is an ordered sequence

(X1, X2, ..., Xn; Ho, Ha; C)

where X1, X2, ..., Xn is a random sample from a population X with the prob-
ability density function f(x; θ), Ho and Ha are hypotheses concerning the
parameter θ in f(x; θ), and C is a Borel set in IRn.

Remark 18.2. Borel sets are defined using the notion of σ-algebra. A
collection of subsets A of a set S is called a σ-algebra if (i) S ∈ A, (ii) Ac ∈ A,
whenever A ∈ A, and (iii)

⋃∞
k=1Ak ∈ A, whenever A1, A2, ..., An, ... ∈ A. The

Borel sets are the member of the smallest σ-algebra containing all open sets
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of IRn. Two examples of Borel sets in IRn are the sets that arise by countable
union of closed intervals in IRn, and countable intersection of open sets in IRn.

The set C is called the critical region in the hypothesis test. The critical
region is obtained using a test statistics W (X1, X2, ..., Xn). If the outcome
of (X1, X2, ..., Xn) turns out to be an element of C, then we decide to accept
Ha; otherwise we accept Ho.

Broadly speaking, a hypothesis test is a rule that tells us for which sample
values we should decide to accept Ho as true and for which sample values we
should decide to reject Ho and accept Ha as true. Typically, a hypothesis test
is specified in terms of a test statistics W . For example, a test might specify
that Ho is to be rejected if the sample total

∑n
k=1 Xk is less than 8. In this

case the critical region C is the set {(x1, x2, ..., xn) |x1 + x2 + · · ·+ xn < 8}.

18.2. A Method of Finding Tests

There are several methods to find test procedures and they are: (1) Like-
lihood Ratio Tests, (2) Invariant Tests, (3) Bayesian Tests, and (4) Union-
Intersection and Intersection-Union Tests. In this section, we only examine
likelihood ratio tests.

Definition 18.5. The likelihood ratio test statistic for testing the simple
null hypothesis Ho : θ ∈ Ωo against the composite alternative hypothesis
Ha : θ +∈ Ωo based on a set of random sample data x1, x2, ..., xn is defined as

W (x1, x2, ..., xn) =
max
θ∈Ωo

L(θ, x1, x2, ..., xn)

max
θ∈Ω

L(θ, x1, x2, ..., xn)
,

where Ω denotes the parameter space, and L(θ, x1, x2, ..., xn) denotes the
likelihood function of the random sample, that is

L(θ, x1, x2, ..., xn) =
n∏

i=1

f(xi; θ).

A likelihood ratio test (LRT) is any test that has a critical region C (that is,
rejection region) of the form

C = {(x1, x2, ..., xn) | W (x1, x2, ..., xn) ≤ k} ,

where k is a number in the unit interval [0, 1].
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If Ho : θ = θ0 and Ha : θ = θa are both simple hypotheses, then the
likelihood ratio test statistic is defined as

W (x1, x2, ..., xn) =
L(θo, x1, x2, ..., xn)
L(θa, x1, x2, ..., xn)

.

Now we give some examples to illustrate this definition.

Example 18.1. Let X1, X2, X3 denote three independent observations from
a distribution with density

f(x; θ) =

{
(1 + θ) xθ if 0 ≤ x ≤ 1

0 otherwise.

What is the form of the LRT critical region for testing Ho : θ = 1 versus
Ha : θ = 2?

Answer: In this example, θo = 1 and θa = 2. By the above definition, the
form of the critical region is given by

C =
{

(x1, x2, x3) ∈ IR3

∣∣∣∣
L (θo, x1, x2, x3)
L (θa, x1, x2, x3)

≤ k

}

=

{
(x1, x2, x3) ∈ IR3

∣∣∣∣∣
(1 + θo)3

∏3
i=1 xθo

i

(1 + θa)3
∏3

i=1 xθa
i

≤ k

}

=
{

(x1, x2, x3) ∈ IR3

∣∣∣∣
8x1x2x3

27x2
1x

2
2x

2
3

≤ k

}

=
{

(x1, x2, x3) ∈ IR3

∣∣∣∣
1

x1x2x3
≤ 27

8
k

}

=
{
(x1, x2, x3) ∈ IR3 | x1x2x3 ≥ a,

}

where a is some constant. Hence the likelihood ratio test is of the form:

“Reject Ho if
3∏

i=1

Xi ≥ a.”

Example 18.2. Let X1, X2, ..., X12 be a random sample from a normal
population with mean zero and variance σ2. What is the form of the LRT
critical region for testing the null hypothesis Ho : σ2 = 10 versus Ha : σ2 = 5?

Answer: Here σ2
o = 10 and σ2

a = 5. By the above definition, the form of the



Test of Statistical Hypotheses for Parameters 538

critical region is given by (with σo
2 = 10 and σa

2 = 5)

C =

{
(x1, x2, ..., x12) ∈ IR12

∣∣∣∣∣
L
(
σo

2, x1, x2, ..., x12

)

L (σa
2, x1, x2, ..., x12)

≤ k

}

=





(x1, x2, ..., x12) ∈ IR12

∣∣∣∣∣∣∣

12∏

i=1

1√
2πσ2

o

e−
1
2 ( xi

σo
)2

1√
2πσ2

a

e−
1
2 ( xi

σa
)2 ≤ k






=

{
(x1, x2, ..., x12) ∈ IR12

∣∣∣∣∣

(
1
2

)6

e
1
20

∑12

i=1
x2

i ≤ k

}

=

{
(x1, x2, ..., x12) ∈ IR12

∣∣∣∣∣

12∑

i=1

x2
i ≤ a

}
,

where a is some constant. Hence the likelihood ratio test is of the form:

“Reject Ho if
12∑

i=1

X2
i ≤ a.”

Example 18.3. Suppose that X is a random variable about which the
hypothesis Ho : X ∼ UNIF (0, 1) against Ha : X ∼ N(0, 1) is to be tested.
What is the form of the LRT critical region based on one observation of X?

Answer: In this example, Lo(x) = 1 and La(x) = 1√
2π

e−
1
2 x2

. By the above
definition, the form of the critical region is given by

C =
{

x ∈ IR
∣∣∣∣

Lo (x)
La (x)

≤ k

}
, where k ∈ [0,∞)

=
{

x ∈ IR
∣∣∣
√

2π e
1
2 x2

≤ k
}

=
{

x ∈ IR
∣∣∣∣ x

2 ≤ 2 ln
(

k√
2π

)}

= {x ∈ IR | x ≤ a, }

where a is some constant. Hence the likelihood ratio test is of the form:
“Reject Ho if X ≤ a.”

In the above three examples, we have dealt with the case when null as
well as alternative were simple. If the null hypothesis is simple (for example,
Ho : θ = θo) and the alternative is a composite hypothesis (for example,
Ha : θ += θo), then the following algorithm can be used to construct the
likelihood ratio critical region:

(1) Find the likelihood function L(θ, x1, x2, ..., xn) for the given sample.
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(2) Find L(θo, x1, x2, ..., xn).
(3) Find max

θ∈Ω
L(θ, x1, x2, ..., xn).

(4) Rewrite L(θo,x1,x2,...,xn)

max
θ∈Ω

L(θ, x1, x2, ..., xn) in a “suitable form”.

(5) Use step (4) to construct the critical region.

Now we give an example to illustrate these steps.

Example 18.4. Let X be a single observation from a population with
probability density

f(x; θ) =






θx e−θ

x! for x = 0, 1, 2, ...,∞

0 otherwise,

where θ ≥ 0. Find the likelihood ratio critical region for testing the null
hypothesis Ho : θ = 2 against the composite alternative Ha : θ += 2.

Answer: The likelihood function based on one observation x is

L(θ, x) =
θx e−θ

x!
.

Next, we find L(θo, x) which is given by

L(2, x) =
2x e−2

x!
.

Our next step is to evaluate max
θ≥0

L(θ, x). For this we differentiate L(θ, x)

with respect to θ, and then set the derivative to 0 and solve for θ. Hence

dL(θ, x)
dθ

=
1
x!
[
e−θ x θx−1 − θx e−θ

]

and dL(θ,x)
dθ = 0 gives θ = x. Hence

max
θ≥0

L(θ, x) =
xx e−x

x!
.

To do the step (4), we consider

L(2, x)
max
θ∈Ω

L(θ, x)
=

2x e−2

x!
xx e−x

x!
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which simplifies to
L(2, x)

max
θ∈Ω

L(θ, x)
=
(

2e

x

)x

e−2.

Thus, the likelihood ratio critical region is given by

C =
{

x ∈ IR
∣∣∣∣

(
2e

x

)x

e−2 ≤ k

}
=
{

x ∈ IR
∣∣∣∣

(
2e

x

)x

≤ a

}

where a is some constant. The likelihood ratio test is of the form: “Reject
Ho if
(

2e
X

)X ≤ a.”

So far, we have learned how to find tests for testing the null hypothesis
against the alternative hypothesis. However, we have not considered the
goodness of these tests. In the next section, we consider various criteria for
evaluating the goodness of an hypothesis test.

18.3. Methods of Evaluating Tests

There are several criteria to evaluate the goodness of a test procedure.
Some well known criteria are: (1) Powerfulness, (2) Unbiasedness and Invari-
ancy, and (3) Local Powerfulness. In order to examine some of these criteria,
we need some terminologies such as error probabilities, power functions, type
I error, and type II error. First, we develop these terminologies.

A statistical hypothesis is a conjecture about the distribution f(x; θ) of
the population X. This conjecture is usually about the parameter θ if one
is dealing with a parametric statistics; otherwise it is about the form of the
distribution of X. If the hypothesis completely specifies the density f(x; θ)
of the population, then it is said to be a simple hypothesis; otherwise it is
called a composite hypothesis. The hypothesis to be tested is called the null
hypothesis. We often hope to reject the null hypothesis based on the sample
information. The negation of the null hypothesis is called the alternative
hypothesis. The null and alternative hypotheses are denoted by Ho and Ha,
respectively.

In hypothesis test, the basic problem is to decide, based on the sample
information, whether the null hypothesis is true. There are four possible
situations that determines our decision is correct or in error. These four
situations are summarized below:
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Ho is true Ho is false
Accept Ho Correct Decision Type II Error
Reject Ho Type I Error Correct Decision

Definition 18.6. Let Ho : θ ∈ Ωo and Ha : θ +∈ Ωo be the null and
alternative hypothesis to be tested based on a random sample X1, X2, ..., Xn

from a population X with density f(x; θ), where θ is a parameter. The
significance level of the hypothesis test

Ho : θ ∈ Ωo and Ha : θ +∈ Ωo,

denoted by α, is defined as

α = P (Type I Error) .

Thus, the significance level of a hypothesis test we mean the probability of
rejecting a true null hypothesis, that is

α = P (Reject Ho / Ho is true) .

This is also equivalent to

α = P (Accept Ha / Ho is true) .

Definition 18.7. Let Ho : θ ∈ Ωo and Ha : θ +∈ Ωo be the null and
alternative hypothesis to be tested based on a random sample X1, X2, ..., Xn

from a population X with density f(x; θ), where θ is a parameter. The
probability of type II error of the hypothesis test

Ho : θ ∈ Ωo and Ha : θ +∈ Ωo,

denoted by β, is defined as

β = P (Accept Ho / Ho is false) .

Similarly, this is also equivalent to

β = P (Accept Ho / Ha is true) .

Remark 18.3. Note that α can be numerically evaluated if the null hypoth-
esis is a simple hypothesis and rejection rule is given. Similarly, β can be
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evaluated if the alternative hypothesis is simple and rejection rule is known.
If null and the alternatives are composite hypotheses, then α and β become
functions of θ.

Example 18.5. Let X1, X2, ..., X20 be a random sample from a distribution
with probability density function

f(x; p) =






px(1− p)1−x if x = 0, 1

0 otherwise,

where 0 < p ≤ 1
2 is a parameter. The hypothesis Ho : p = 1

2 to be tested
against Ha : p < 1

2 . If Ho is rejected when
∑20

i=1 Xi ≤ 6, then what is the
probability of type I error?

Answer: Since each observation Xi ∼ BER(p), the sum the observations
20∑

i=1

Xi ∼ BIN(20, p). The probability of type I error is given by

α = P (Type I Error)

= P (Reject Ho / Ho is true)

= P

(
20∑

i=1

Xi ≤ 6

/
Ho is true

)

= P

(
20∑

i=1

Xi ≤ 6

/
Ho : p =

1
2

)

=
6∑

k=0

(
20
k

) (
1
2

)k (
1− 1

2

)20−k

= 0.0577 (from binomial table).

Hence the probability of type I error is 0.0577.

Example 18.6. Let p represent the proportion of defectives in a manufac-
turing process. To test Ho : p ≤ 1

4 versus Ha : p > 1
4 , a random sample of

size 5 is taken from the process. If the number of defectives is 4 or more, the
null hypothesis is rejected. What is the probability of rejecting Ho if p = 1

5?

Answer: Let X denote the number of defectives out of a random sample of
size 5. Then X is a binomial random variable with n = 5 and p = 1

5 . Hence,
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the probability of rejecting Ho is given by

α = P (Reject Ho / Ho is true)

= P (X ≥ 4 / Ho is true)

= P

(
X ≥ 4

/
p =

1
5

)

= P

(
X = 4

/
p =

1
5

)
+ P

(
X = 5

/
p =

1
5

)

=
(

5
4

)
p4(1− p)1 +

(
5
5

)
p5(1− p)0

= 5
(

1
5

)4 (4
5

)
+
(

1
5

)5

=
(

1
5

)5

[20 + 1]

=
21

3125
.

Hence the probability of rejecting the null hypothesis Ho is 21
3125 .

Example 18.7. A random sample of size 4 is taken from a normal distri-
bution with unknown mean µ and variance σ2 > 0. To test Ho : µ = 0
against Ha : µ < 0 the following test is used: “Reject Ho if and only if
X1 +X2 +X3 +X4 < −20.” Find the value of σ so that the significance level
of this test will be closed to 0.14.

Answer: Since

0.14 = α (significance level)

= P (Type I Error)

= P (Reject Ho / Ho is true)

= P (X1 + X2 + X3 + X4 < −20 /Ho : µ = 0)

= P
(
X < −5 /Ho : µ = 0

)

= P

(
X − 0

σ
2

<
−5− 0

σ
2

)

= P

(
Z < −10

σ

)
,

we get from the standard normal table

1.08 =
10
σ

.
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Therefore

σ =
10

1.08
= 9.26.

Hence, the standard deviation has to be 9.26 so that the significance level
will be closed to 0.14.

Example 18.8. A normal population has a standard deviation of 16. The
critical region for testing Ho : µ = 5 versus the alternative Ha : µ = k is
X̄ > k − 2. What would be the value of the constant k and the sample size
n which would allow the probability of Type I error to be 0.0228 and the
probability of Type II error to be 0.1587.

Answer: It is given that the population X ∼ N
(
µ, 162
)
. Since

0.0228 = α

= P (Type I Error)

= P (Reject Ho / Ho is true)

= P
(
X > k − 2 /Ho : µ = 5

)

= P



X − 5√
256
n

>
k − 7√

256
n





= P



Z >
k − 7√

256
n





= 1− P



Z ≤ k − 7√
256
n





Hence, from standard normal table, we have

(k − 7)
√

n

16
= 2

which gives

(k − 7)
√

n = 32.
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Similarly

0.1587 = P (Type II Error)

= P (Accept Ho / Ha is true)

= P
(
X ≤ k − 2 /Ha : µ = k

)

= P



X − µ√
256
n

≤ k − 2− µ√
256
n

/
Ha : µ = k





= P



X − k√
256
n

≤ k − 2− k√
256
n





= P



Z ≤ − 2√
256
n





= 1− P

(
Z ≤ 2

√
n

16

)
.

Hence 0.1587 = 1 − P
(
Z ≤ 2

√
n

16

)
or P
(
Z ≤ 2

√
n

16

)
= 0.8413. Thus, from

the standard normal table, we have

2
√

n

16
= 1

which yields
n = 64.

Letting this value of n in
(k − 7)

√
n = 32,

we see that k = 11.

While deciding to accept Ho or Ha, we may make a wrong decision. The
probability γ of a wrong decision can be computed as follows:

γ = P (Ha accepted and Ho is true) + P (Ho accepted and Ha is true)

= P (Ha accepted / Ho is true) P (Ho is true)

+ P (Ho accepted / Ha is true) P (Ha is true)

= αP (Ho is true) + β P (Ha is true) .

In most cases, the probabilities P (Ho is true) and P (Ha is true) are not
known. Therefore, it is, in general, not possible to determine the exact
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numerical value of the probability γ of making a wrong decision. However,
since γ is a weighted sum of α and β, and P (Ho is true)+P (Ha is true) = 1,
we have

γ ≤ max{α, β}.

A good decision rule (or a good test) is the one which yields the smallest γ.
In view of the above inequality, one will have a small γ if the probability of
type I error as well as probability of type II error are small.

The alternative hypothesis is mostly a composite hypothesis. Thus, it
is not possible to find a value for the probability of type II error, β. For
composite alternative, β is a function of θ. That is, β : Ωc

o :→ [0, 1]. Here Ωc
o

denotes the complement of the set Ωo in the parameter space Ω. In hypothesis
test, instead of β, one usually considers the power of the test 1− β(θ), and
a small probability of type II error is equivalent to large power of the test.

Definition 18.8. Let Ho : θ ∈ Ωo and Ha : θ +∈ Ωo be the null and
alternative hypothesis to be tested based on a random sample X1, X2, ..., Xn

from a population X with density f(x; θ), where θ is a parameter. The power
function of a hypothesis test

Ho : θ ∈ Ωo versus Ha : θ +∈ Ωo

is a function π : Ω→ [0, 1] defined by

π(θ) =






P (Type I Error) if Ho is true

1− P (Type II Error) if Ha is true.

Example 18.9. A manufacturing firm needs to test the null hypothesis Ho

that the probability p of a defective item is 0.1 or less, against the alternative
hypothesis Ha : p > 0.1. The procedure is to select two items at random. If
both are defective, Ho is rejected; otherwise, a third is selected. If the third
item is defective Ho is rejected. If all other cases, Ho is accepted, what is the
power of the test in terms of p (if Ho is true)?

Answer: Let p be the probability of a defective item. We want to calculate
the power of the test at the null hypothesis. The power function of the test
is given by

π(p) =






P (Type I Error) if p ≤ 0.1

1− P (Type II Error) if p > 0.1.
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Hence, we have
π(p)

= P (Reject Ho / Ho is true)

= P (Reject Ho / Ho : p = p)

= P (first two items are both defective /p) +

+ P (at least one of the first two items is not defective and third is/p)

= p2 + (1− p)2 p +
(

2
1

)
p(1− p)p

= p + p2 − p3.

The graph of this power function is shown below.

Remark 18.4. If X denotes the number of independent trials needed to
obtain the first success, then X ∼ GEO(p), and

P (X = k) = (1− p)k−1 p,

where k = 1, 2, 3, ...,∞. Further

P (X ≤ n) = 1− (1− p)n

since
n∑

k=1

(1− p)k−1 p = p
n∑

k=1

(1− p)k−1

= p
1− (1− p)n

1− (1− p)
= 1− (1− p)n.
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Example 18.10. Let X be the number of independent trails required to
obtain a success where p is the probability of success on each trial. The
hypothesis Ho : p = 0.1 is to be tested against the alternative Ha : p = 0.3.
The hypothesis is rejected if X ≤ 4. What is the power of the test if Ha is
true?

Answer: The power function is given by

π(p) =






P (Type I Error) if p = 0.1

1− P (Type II Error) if p = 0.3.

Hence, we have

α = 1− P (Accept Ho / Ho is false)

= P (Reject Ho / Ha is true)

= P (X ≤ 4 / Ha is true)

= P (X ≤ 4 / p = 0.3)

=
4∑

k=1

P (X = k /p = 0.3)

=
4∑

k=1

(1− p)k−1 p (where p = 0.3)

=
4∑

k=1

(0.7)k−1 (0.3)

= 0.3
4∑

k=1

(0.7)k−1

= 1− (0.7)4

= 0.7599.

Hence, the power of the test at the alternative is 0.7599.

Example 18.11. Let X1, X2, ..., X25 be a random sample of size 25 drawn
from a normal distribution with unknown mean µ and variance σ2 = 100.
It is desired to test the null hypothesis µ = 4 against the alternative µ = 6.
What is the power at µ = 6 of the test with rejection rule: reject µ = 4 if∑25

i=1 Xi ≥ 125?
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Answer: The power of the test at the alternative is

π(6) = 1− P (Type II Error)

= 1− P (Accept Ho / Ho is false)

= P (Reject Ho / Ha is true)

= P

(
25∑

i=1

Xi ≥ 125 / Ha : µ = 6

)

= P
(
X ≥ 5 / Haµ = 6

)

= P

(
X − 6

10√
25

≥ 5− 6
10√
25

)

= P

(
Z ≥ −1

2

)

= 0.6915.

Example 18.12. A urn contains 7 balls, θ of which are red. A sample of
size 2 is drawn without replacement to test Ho : θ ≤ 1 against Ha : θ > 1.
If the null hypothesis is rejected if one or more red balls are drawn, find the
power of the test when θ = 2.

Answer: The power of the test at θ = 2 is given by

π(2) = 1− P (Type II Error)

= 1− P (Accept Ho / Ho is false)

= 1− P (zero red balls are drawn /2 balls were red)

= 1−
(5
2

)
(7
2

)

= 1− 10
21

=
11
21

= 0.524.

In all of these examples, we have seen that if the rule for rejection of the
null hypothesis Ho is given, then one can compute the significance level or
power function of the hypothesis test. The rejection rule is given in terms
of a statistic W (X1, X2, ..., Xn) of the sample X1, X2, ..., Xn. For instance,
in Example 18.5, the rejection rule was: “Reject the null hypothesis Ho if∑20

i=1 Xi ≤ 6.” Similarly, in Example 18.7, the rejection rule was: “Reject Ho



Test of Statistical Hypotheses for Parameters 550

if and only if X1 +X2 +X3 +X4 < −20”, and so on. The statistic W , used in
the statement of the rejection rule, partitioned the set Sn into two subsets,
where S denotes the support of the density function of the population X.
One subset is called the rejection or critical region and other subset is called
the acceptance region. The rejection rule is obtained in such a way that the
probability of the type I error is as small as possible and the power of the
test at the alternative is as large as possible.

Next, we give two definitions that will lead us to the definition of uni-
formly most powerful test.

Definition 18.9. Given 0 ≤ δ ≤ 1, a test (or test procedure) T for testing
the null hypothesis Ho : θ ∈ Ωo against the alternative Ha : θ ∈ Ωa is said to
be a test of level δ if

max
θ∈Ωo

π(θ) ≤ δ,

where π(θ) denotes the power function of the test T .

Definition 18.10. Given 0 ≤ δ ≤ 1, a test (or test procedure) for testing
the null hypothesis Ho : θ ∈ Ωo against the alternative Ha : θ ∈ Ωa is said to
be a test of size δ if

max
θ∈Ωo

π(θ) = δ.

Definition 18.11. Let T be a test procedure for testing the null hypothesis
Ho : θ ∈ Ωo against the alternative Ha : θ ∈ Ωa. The test (or test procedure)
T is said to be the uniformly most powerful (UMP) test of level δ if T is of
level δ and for any other test W of level δ,

πT (θ) ≥ πW (θ)

for all θ ∈ Ωa. Here πT (θ) and πW (θ) denote the power functions of tests T

and W , respectively.

Remark 18.5. If T is a test procedure for testing Ho : θ = θo against
Ha : θ = θa based on a sample data x1, ..., xn from a population X with a
continuous probability density function f(x; θ), then there is a critical region
C associated with the the test procedure T , and power function of T can be
computed as

πT =
∫

C
L(θa, x1, ..., xn) dx1 · · · dxn.
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Similarly, the size of a critical region C, say α, can be given by

α =
∫

C
L(θo, x1, ..., xn) dx1 · · · dxn.

The following famous result tells us which tests are uniformly most pow-
erful if the null hypothesis and the alternative hypothesis are both simple.

Theorem 18.1 (Neyman-Pearson). Let X1, X2, ..., Xn be a random sam-
ple from a population with probability density function f(x; θ). Let

L(θ, x1, ..., xn) =
n∏

i=1

f(xi; θ)

be the likelihood function of the sample. Then any critical region C of the
form

C =
{

(x1, x2, ..., xn)
∣∣∣∣

L (θo, x1, ..., xn)
L (θa, x1, ..., xn)

≤ k

}

for some constant 0 ≤ k <∞ is best (or uniformly most powerful) of its size
for testing Ho : θ = θo against Ha : θ = θa.

Proof: We assume that the population has a continuous probability density
function. If the population has a discrete distribution, the proof can be
appropriately modified by replacing integration by summation.

Let C be the critical region of size α as described in the statement of the
theorem. Let B be any other critical region of size α. We want to show that
the power of C is greater than or equal to that of B. In view of Remark 18.5,
we would like to show that
∫

C
L(θa, x1, ..., xn) dx1 · · · dxn ≥

∫

B
L(θa, x1, ..., xn) dx1 · · · dxn. (1)

Since C and B are both critical regions of size α, we have
∫

C
L(θo, x1, ..., xn) dx1 · · · dxn =

∫

B
L(θo, x1, ..., xn) dx1 · · · dxn. (2)

The last equality (2) can be written as
∫

C∩B
L(θo, x1, ..., xn) dx1 · · · dxn +

∫

C∩Bc

L(θo, x1, ..., xn) dx1 · · · dxn

=
∫

C∩B
L(θo, x1, ..., xn) dx1 · · · dxn +

∫

Cc∩B
L(θo, x1, ..., xn) dx1 · · · dxn
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since
C = (C ∩B) ∪ (C ∩Bc) and B = (C ∩B) ∪ (Cc ∩B). (3)

Therefore from the last equality, we have
∫

C∩Bc

L(θo, x1, ..., xn) dx1 · · · dxn =
∫

Cc∩B
L(θo, x1, ..., xn) dx1 · · · dxn. (4)

Since
C =
{

(x1, x2, ..., xn)
∣∣∣∣

L (θo, x1, ..., xn)
L (θa, x1, ..., xn)

≤ k

}
(5)

we have
L(θa, x1, ..., xn) ≥ L(θo, x1, ..., xn)

k
(6)

on C, and

L(θa, x1, ..., xn) <
L(θo, x1, ..., xn)

k
(7)

on Cc. Therefore from (4), (6) and (7), we have
∫

C∩Bc

L(θa, x1,..., xn) dx1 · · · dxn

≥
∫

C∩Bc

L(θo, x1, ..., xn)
k

dx1 · · · dxn

=
∫

Cc∩B

L(θo, x1, ..., xn)
k

dx1 · · · dxn

≥
∫

Cc∩B
L(θa, x1, ..., xn) dx1 · · · dxn.

Thus, we obtain
∫

C∩Bc

L(θa, x1, ..., xn) dx1 · · · dxn ≥
∫

Cc∩B
L(θa, x1, ..., xn) dx1 · · · dxn.

From (3) and the last inequality, we see that
∫

C
L(θa, x1, ..., xn) dx1 · · · dxn

=
∫

C∩B
L(θa, x1, ..., xn) dx1 · · · dxn +

∫

C∩Bc

L(θa, x1, ..., xn) dx1 · · · dxn

≥
∫

C∩B
L(θa, x1, ..., xn) dx1 · · · dxn +

∫

Cc∩B
L(θa, x1, ..., xn) dx1 · · · dxn

≥
∫

B
L(θa, x1, ..., xn) dx1 · · · dxn

and hence the theorem is proved.
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Now we give several examples to illustrate the use of this theorem.

Example 18.13. Let X be a random variable with a density function f(x).
What is the critical region for the best test of

Ho : f(x) =






1
2 if −1 < x < 1

0 elsewhere,

against

Ha : f(x) =






1− |x| if −1 < x < 1

0 elsewhere,

at the significance size α = 0.10?

Answer: We assume that the test is performed with a sample of size 1.
Using Neyman-Pearson Theorem, the best critical region for the best test at
the significance size α is given by

C =
{

x ∈ IR | Lo (x)
La (x)

≤ k

}

=
{

x ∈ IR |
1
2

1− |x| ≤ k

}

=
{

x ∈ IR | |x| ≤ 1− 1
2k

}

=
{

x ∈ IR | 1
2k
− 1 ≤ x ≤ 1− 1

2k

}
.

Since
0.1 = P ( C )

= P

(
Lo (X)
La (X)

≤ k / Ho is true
)

= P

( 1
2

1− |X| ≤ k / Ho is true
)

= P

(
1
2k
− 1 ≤ X ≤ 1− 1

2k
/ Ho is true

)

=
∫ 1− 1

2k

1
2k−1

1
2

dx

= 1− 1
2k

,

,

we get the critical region C to be

C = {x ∈ IR | − 0.1 ≤ x ≤ 0.1}.
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Thus the best critical region is C = [−0.1, 0.1] and the best test is: “Reject
Ho if −0.1 ≤ X ≤ 0.1”.

Example 18.14. Suppose X has the density function

f(x; θ) =

{
(1 + θ) xθ if 0 ≤ x ≤ 1

0 otherwise.

Based on a single observed value of X, find the most powerful critical region
of size α = 0.1 for testing Ho : θ = 1 against Ha : θ = 2.

Answer: By Neyman-Pearson Theorem, the form of the critical region is
given by

C =
{

x ∈ IR | L (θo, x)
L (θa, x)

≤ k

}

=
{

x ∈ IR | (1 + θo) xθo

(1 + θa) xθa
≤ k

}

=
{

x ∈ IR | 2x

3x2
≤ k

}

=
{

x ∈ IR | 1
x
≤ 3

2
k

}

= {x ∈ IR | x ≥ a, }

where a is some constant. Hence the most powerful or best test is of the
form: “Reject Ho if X ≥ a.”

Since, the significance level of the test is given to be α = 0.1, the constant
a can be determined. Now we proceed to find a. Since

0.1 = α

= P (Reject Ho / Ho is true}
= P (X ≥ a / θ = 1)

=
∫ 1

a
2x dx

= 1− a2,

hence
a2 = 1− 0.1 = 0.9.

Therefore
a =

√
0.9,
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since k in Neyman-Pearson Theorem is positive. Hence, the most powerful
test is given by “Reject Ho if X ≥

√
0.9”.

Example 18.15. Suppose that X is a random variable about which the
hypothesis Ho : X ∼ UNIF (0, 1) against Ha : X ∼ N(0, 1) is to be tested.
What is the most powerful test with a significance level α = 0.05 based on
one observation of X?

Answer: By Neyman-Pearson Theorem, the form of the critical region is
given by

C =
{

x ∈ IR | Lo (x)
La (x)

≤ k

}

=
{

x ∈ IR |
√

2π e
1
2 x2

≤ k
}

=
{

x ∈ IR | x2 ≤ 2 ln
(

k√
2π

)}

= {x ∈ IR | x ≤ a, }

where a is some constant. Hence the most powerful or best test is of the
form: “Reject Ho if X ≤ a.”

Since, the significance level of the test is given to be α = 0.05, the
constant a can be determined. Now we proceed to find a. Since

0.05 = α

= P (Reject Ho / Ho is true}
= P (X ≤ a / X ∼ UNIF (0, 1))

=
∫ a

0
dx

= a,

hence a = 0.05. Thus, the most powerful critical region is given by

C = {x ∈ IR | 0 < x ≤ 0.05}

based on the support of the uniform distribution on the open interval (0, 1).
Since the support of this uniform distribution is the interval (0, 1), the ac-
ceptance region (or the complement of C in (0, 1)) is

Cc = {x ∈ IR | 0.05 < x < 1}.
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However, since the support of the standard normal distribution is IR, the
actual critical region should be the complement of Cc in IR. Therefore, the
critical region of this hypothesis test is the set

{x ∈ IR |x ≤ 0.05 or x ≥ 1}.

The most powerful test for α = 0.05 is: “Reject Ho if X ≤ 0.05 or X ≥ 1.”

Example 18.16. Let X1, X2, X3 denote three independent observations
from a distribution with density

f(x; θ) =

{
(1 + θ) xθ if 0 ≤ x ≤ 1

0 otherwise.

What is the form of the best critical region of size 0.034 for testing Ho : θ = 1
versus Ha : θ = 2?

Answer: By Neyman-Pearson Theorem, the form of the critical region is
given by (with θo = 1 and θa = 2)

C =
{

(x1, x2, x3) ∈ IR3 | L (θo, x1, x2, x3)
L (θa, x1, x2, x3)

≤ k

}

=

{
(x1, x2, x3) ∈ IR3 |

(1 + θo)3
∏3

i=1 xθo
i

(1 + θa)3
∏3

i=1 xθa
i

≤ k

}

=
{

(x1, x2, x3) ∈ IR3 | 8x1x2x3

27x2
1x

2
2x

2
3

≤ k

}

=
{

(x1, x2, x3) ∈ IR3 | 1
x1x2x3

≤ 27
8

k

}

=
{
(x1, x2, x3) ∈ IR3 | x1x2x3 ≥ a,

}

where a is some constant. Hence the most powerful or best test is of the

form: “Reject Ho if
3∏

i=1

Xi ≥ a.”

Since, the significance level of the test is given to be α = 0.034, the
constant a can be determined. To evaluate the constant a, we need the
probability distribution of X1X2X3. The distribution of X1X2X3 is not
easy to get. Hence, we will use Theorem 17.5. There, we have shown that
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−2(1 + θ)
∑3

i=1 lnXi ∼ χ2(6). Now we proceed to find a. Since

0.034 = α

= P (Reject Ho / Ho is true}
= P (X1X2X3 ≥ a / θ = 1)

= P (ln(X1X2X3) ≥ ln a / θ = 1)

= P (−2(1 + θ) ln(X1X2X3) ≤ −2(1 + θ) ln a / θ = 1)

= P (−4 ln(X1X2X3) ≤ −4 ln a)

= P
(
χ2(6) ≤ −4 ln a

)

hence from chi-square table, we get

−4 ln a = 1.4.

Therefore
a = e−0.35 = 0.7047.

Hence, the most powerful test is given by “Reject Ho if X1X2X3 ≥ 0.7047”.

The critical region C is the region above the surface x1x2x3 = 0.7047 of
the unit cube [0, 1]3. The following figure illustrates this region.

Example 18.17. Let X1, X2, ..., X12 be a random sample from a normal
population with mean zero and variance σ2. What is the most powerful test
of size 0.025 for testing the null hypothesis Ho : σ2 = 10 versus Ha : σ2 = 5?
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Answer: By Neyman-Pearson Theorem, the form of the critical region is
given by (with σo

2 = 10 and σa
2 = 5)

C =

{
(x1, x2, ..., x12) ∈ IR12

∣∣∣∣∣
L
(
σo

2, x1, x2, ..., x12

)

L (σa
2, x1, x2, ..., x12)

≤ k

}

=





(x1, x2, ..., x12) ∈ IR12

∣∣∣∣∣∣∣

12∏

i=1

1√
2πσ2

o

e−
1
2 ( xi

σo
)2

1√
2πσ2

a

e−
1
2 ( xi

σa
)2 ≤ k






=

{
(x1, x2, ..., x12) ∈ IR12

∣∣∣∣∣

(
1
2

)6

e
1
20

∑12

i=1
x2

i ≤ k

}

=

{
(x1, x2, ..., x12) ∈ IR12

∣∣∣∣∣

12∑

i=1

x2
i ≤ a

}
,

where a is some constant. Hence the most powerful or best test is of the

form: “Reject Ho if
12∑

i=1

X2
i ≤ a.”

Since, the significance level of the test is given to be α = 0.025, the
constant a can be determined. To evaluate the constant a, we need the
probability distribution of X2

1 + X2
2 + · · · + X2

12. It can be shown that the
distribution of

∑12
i=1

(
Xi
σ

)2 ∼ χ2(12). Now we proceed to find a. Since

0.025 = α

= P (Reject Ho / Ho is true}

= P

(
12∑

i=1

(
Xi

σ

)2

≤ a / σ2 = 10

)

= P

(
12∑

i=1

(
Xi√
10

)2

≤ a / σ2 = 10

)

= P
(
χ2(12) ≤ a

10

)
,

hence from chi-square table, we get

a

10
= 4.4.

Therefore
a = 44.
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Hence, the most powerful test is given by “Reject Ho if
∑12

i=1 X2
i ≤ 44.” The

best critical region of size 0.025 is given by

C =

{
(x1, x2, ..., x12) ∈ IR12 |

12∑

i=1

x2
i ≤ 44

}
.

In last five examples, we have found the most powerful tests and corre-
sponding critical regions when the both Ho and Ha are simple hypotheses. If
either Ho or Ha is not simple, then it is not always possible to find the most
powerful test and corresponding critical region. In this situation, hypothesis
test is found by using the likelihood ratio. A test obtained by using likelihood
ratio is called the likelihood ratio test and the corresponding critical region is
called the likelihood ratio critical region.

18.4. Some Examples of Likelihood Ratio Tests

In this section, we illustrate, using likelihood ratio, how one can construct
hypothesis test when one of the hypotheses is not simple. As pointed out
earlier, the test we will construct using the likelihood ratio is not the most
powerful test. However, such a test has all the desirable properties of a
hypothesis test. To construct the test one has to follow a sequence of steps.
These steps are outlined below:

(1) Find the likelihood function L(θ, x1, x2, ..., xn) for the given sample.

(2) Evaluate max
θ∈Ωo

L(θ, x1, x2, ..., xn).

(3) Find the maximum likelihood estimator θ̂ of θ.

(4) Compute max
θ∈Ω

L(θ, x1, x2, ..., xn) using L
(
θ̂, x1, x2, ..., xn

)
.

(5) Using steps (2) and (4), find W (x1, ..., xn) =
max
θ∈Ωo

L(θ, x1, x2, ..., xn)

max
θ∈Ω

L(θ, x1, x2, ..., xn) .

(6) Using step (5) determine C = {(x1, x2, ..., xn) |W (x1, ..., xn) ≤ k},
where k ∈ [0, 1].

(7) Reduce W (x1, ..., xn) ≤ k to an equivalent inequality Ŵ (x1, ..., xn) ≤ A.

(8) Determine the distribution of Ŵ (x1, ..., xn).

(9) Find A such that given α equals P
(
Ŵ (x1, ..., xn) ≤ A |Ho is true

)
.
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In the remaining examples, for notational simplicity, we will denote the
likelihood function L(θ, x1, x2, ..., xn) simply as L(θ).

Example 18.19. Let X1, X2, ..., Xn be a random sample from a normal
population with mean µ and known variance σ2. What is the likelihood
ratio test of size α for testing the null hypothesis Ho : µ = µo versus the
alternative hypothesis Ha : µ += µo?

Answer: The likelihood function of the sample is given by

L(µ) =
n∏

i=1

(
1

σ
√

2π

)
e−

1
2σ2 (xi−µ)2

=
(

1
σ
√

2π

)n

e

− 1
2σ2

n∑

i=1

(xi − µ)2

.

Since Ωo = {µo}, we obtain

max
µ∈Ωo

L(µ) = L(µo)

=
(

1
σ
√

2π

)n

e

− 1
2σ2

n∑

i=1

(xi − µo)2

.

We have seen in Example 15.13 that if X ∼ N(µ, σ2), then the maximum
likelihood estimator of µ is X, that is

µ̂ = X.

Hence

max
µ∈Ω

L(µ) = L(µ̂) =
(

1
σ
√

2π

)n

e

− 1
2σ2

n∑

i=1

(xi − x)2

.

Now the likelihood ratio statistics W (x1, x2, ..., xn) is given by

W (x1, x2, ..., xn) =

(
1

σ
√

2π

)n
e

− 1
2σ2

n∑

i=1

(xi − µo)2

(
1

σ
√

2π

)n
e

− 1
2σ2

n∑

i=1

(xi − x)2
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which simplifies to

W (x1, x2, ..., xn) = e−
n

2σ2 (x−µo)2 .

Now the inequality W (x1, x2, ..., xn) ≤ k becomes

e−
n

2σ2 (x−µo)2 ≤ k

and which can be rewritten as

(x− µo)2 ≥ −
2σ2

n
ln(k)

or
|x− µo| ≥ K

where K =
√
− 2σ2

n ln(k). In view of the above inequality, the critical region
can be described as

C = {(x1, x2, ..., xn) | |x− µo| ≥ K }.

Since we are given the size of the critical region to be α, we can determine
the constant K. Since the size of the critical region is α, we have

α = P
(∣∣X − µo

∣∣ ≥ K
)
.

For finding K, we need the probability density function of the statistic X−µo

when the population X is N(µ, σ2) and the null hypothesis Ho : µ = µo is
true. Since σ2 is known and Xi ∼ N(µ, σ2),

X − µo
σ√
n

∼ N(0, 1)

and
α = P

( ∣∣X − µo

∣∣ ≥ K
)

= P

(∣∣∣∣∣
X − µo

σ√
n

∣∣∣∣∣ ≥ K

√
n

σ

)

= P

(
|Z| ≥ K

√
n

σ

)
where Z =

X − µo
σ√
n

= 1− P

(
−K

√
n

σ
≤ Z ≤ K

√
n

σ

)
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we get

zα
2

= K

√
n

σ

which is
K = zα

2

σ√
n

,

where zα
2

is a real number such that the integral of the standard normal
density from zα

2
to ∞ equals α

2 .

Hence, the likelihood ratio test is given by “Reject Ho if

∣∣X − µo

∣∣ ≥ zα
2

σ√
n

.”

If we denote
z =

x− µo
σ√
n

then the above inequality becomes

|Z| ≥ zα
2
.

Thus critical region is given by

C =
{
(x1, x2, ..., xn) | |z| ≥ zα

2
}.

This tells us that the null hypothesis must be rejected when the absolute
value of z takes on a value greater than or equal to zα

2
.

Remark 18.6. The hypothesis Ha : µ += µo is called a two-sided alternative
hypothesis. An alternative hypothesis of the form Ha : µ > µo is called
a right-sided alternative. Similarly, Ha : µ < µo is called the a left-sided
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alternative. In the above example, if we had a right-sided alternative, that
is Ha : µ > µo, then the critical region would have been

C = {(x1, x2, ..., xn) | z ≥ zα }.

Similarly, if the alternative would have been left-sided, that is Ha : µ < µo,
then the critical region would have been

C = {(x1, x2, ..., xn) | z ≤ −zα }.

We summarize the three cases of hypotheses test of the mean (of the normal
population with known variance) in the following table.

Ho Ha Critical Region (or Test)

µ = µo µ > µo z = x−µo
σ√
n
≥ zα

µ = µo µ < µo z = x−µo
σ√
n
≤ −zα

µ = µo µ += µo |z| =
∣∣∣∣
x−µo
σ√
n

∣∣∣∣ ≥ zα
2

Example 18.20. Let X1, X2, ..., Xn be a random sample from a normal
population with mean µ and unknown variance σ2. What is the likelihood
ratio test of size α for testing the null hypothesis Ho : µ = µo versus the
alternative hypothesis Ha : µ += µo?

Answer: In this example,

Ω =
{(

µ, σ2
)
∈ IR2 | −∞ < µ <∞, σ2 > 0

}
,

Ωo =
{(

µo, σ
2
)
∈ IR2 | σ2 > 0

}
,

Ωa =
{(

µ, σ2
)
∈ IR2 | µ += µo, σ

2 > 0
}

.

These sets are illustrated below.
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The likelihood function is given by

L
(
µ, σ2
)

=
n∏

i=1

(
1√

2πσ2

)
e−

1
2 ( xi−µ

σ )2

=
(

1√
2πσ2

)n

e−
1

2σ2

∑n

i=1
(xi−µ)2 .

Next, we find the maximum of L
(
µ, σ2
)

on the set Ωo. Since the set Ωo is
equal to

{(
µo, σ2
)
∈ IR2 | 0 < σ < ∞

}
, we have

max
(µ,σ2)∈Ωo

L
(
µ, σ2
)

= max
σ2>0

L
(
µo, σ

2
)
.

Since L
(
µo, σ2
)

and lnL
(
µo, σ2
)

achieve the maximum at the same σ value,
we determine the value of σ where ln L

(
µo, σ2
)

achieves the maximum. Tak-
ing the natural logarithm of the likelihood function, we get

ln
(
L
(
µ, σ2
))

= −n

2
ln(σ2)− n

2
ln(2π)− 1

2σ2

n∑

i=1

(xi − µo)2.

Differentiating lnL
(
µo, σ2
)

with respect to σ2, we get from the last equality

d

dσ2
ln
(
L
(
µ, σ2
))

= − n

2σ2
+

1
2σ4

n∑

i=1

(xi − µo)2.

Setting this derivative to zero and solving for σ, we obtain

σ =

√√√√ 1
n

n∑

i=1

(xi − µo)2.
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Thus ln
(
L
(
µ, σ2
))

attains maximum at σ =

√√√√ 1
n

n∑

i=1

(xi − µo)2. Since this

value of σ is also yield maximum value of L
(
µ, σ2
)
, we have

max
σ2>0

L
(
µo, σ

2
)

=

(
2π

1
n

n∑

i=1

(xi − µo)2
)−n

2

e−
n
2 .

Next, we determine the maximum of L
(
µ, σ2
)

on the set Ω. As before,
we consider ln L

(
µ, σ2
)

to determine where L
(
µ, σ2
)

achieves maximum.
Taking the natural logarithm of L

(
µ, σ2
)
, we obtain

ln
(
L
(
µ, σ2
))

= −n

2
ln(σ2)− n

2
ln(2π)− 1

2σ2

n∑

i=1

(xi − µ)2.

Taking the partial derivatives of lnL
(
µ, σ2
)

first with respect to µ and then
with respect to σ2, we get

∂

∂µ
lnL
(
µ, σ2
)

=
1
σ2

n∑

i=1

(xi − µ),

and
∂

∂σ2
lnL
(
µ, σ2
)

= − n

2σ2
+

1
2σ4

n∑

i=1

(xi − µ)2,

respectively. Setting these partial derivatives to zero and solving for µ and
σ, we obtain

µ = x and σ2 =
n− 1

n
s2,

where s2 = 1
n−1

n∑

i=1

(xi − x)2 is the sample variance.

Letting these optimal values of µ and σ into L
(
µ, σ2
)
, we obtain

max
(µ,σ2)∈Ω

L
(
µ, σ2
)

=

(
2π

1
n

n∑

i=1

(xi − x)2
)−n

2

e−
n
2 .

Hence

max
(µ,σ2)∈Ωo

L
(
µ, σ2
)

max
(µ,σ2)∈Ω

L
(
µ, σ2
) =

(
2π 1

n

n∑

i=1

(xi − µo)2
)−n

2

e−
n
2

(
2π 1

n

n∑

i=1

(xi − x)2
)−n

2

e−
n
2

=





n∑

i=1

(xi − µo)2

n∑

i=1

(xi − x)2





−n
2

.
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Since
n∑

i=1

(xi − x)2 = (n− 1) s2

and
n∑

i=1

(xi − µ)2 =
n∑

i=1

(xi − x)2 + n (x− µo)
2 ,

we get

W (x1, x2, ..., xn) =
max

(µ,σ2)∈Ωo

L
(
µ, σ2
)

max
(µ,σ2)∈Ω

L
(
µ, σ2
) =

(
1 +

n

n− 1
(x− µo)

2

s2

)−n
2

.

Now the inequality W (x1, x2, ..., xn) ≤ k becomes
(

1 +
n

n− 1
(x− µo)

2

s2

)−n
2

≤ k

and which can be rewritten as
(

x− µo

s

)2

≥ n− 1
n

(
k− 2

n − 1
)

or ∣∣∣∣∣
x− µo

s√
n

∣∣∣∣∣ ≥ K

where K =
√

(n− 1)
[
k− 2

n − 1
]
. In view of the above inequality, the critical

region can be described as

C =

{
(x1, x2, ..., xn) |

∣∣∣∣∣
x− µo

s√
n

∣∣∣∣∣ ≥ K

}

and the best likelihood ratio test is: “Reject Ho if
∣∣∣∣
x−µo

s√
n

∣∣∣∣ ≥ K”. Since we

are given the size of the critical region to be α, we can find the constant K.
For finding K, we need the probability density function of the statistic x−µo

s√
n

when the population X is N(µ, σ2) and the null hypothesis Ho : µ = µo is
true.

Since the population is normal with mean µ and variance σ2,

X − µo
S√
n

∼ t(n− 1),
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where S2 is the sample variance and equals to 1
n−1

n∑

i=1

(
Xi −X

)2. Hence

K = tα
2
(n− 1)

s√
n

,

where tα
2
(n− 1) is a real number such that the integral of the t-distribution

with n− 1 degrees of freedom from tα
2
(n− 1) to ∞ equals α

2 .

Therefore, the likelihood ratio test is given by “Reject Ho : µ = µo if

∣∣X − µo

∣∣ ≥ tα
2
(n− 1)

S√
n

.”

If we denote
t =

x− µo
s√
n

then the above inequality becomes

|T | ≥ tα
2
(n− 1).

Thus critical region is given by

C =
{
(x1, x2, ..., xn) | |t| ≥ tα

2
(n− 1)}.

This tells us that the null hypothesis must be rejected when the absolute
value of t takes on a value greater than or equal to tα

2
(n− 1).

Remark 18.7. In the above example, if we had a right-sided alternative,
that is Ha : µ > µo, then the critical region would have been

C = {(x1, x2, ..., xn) | t ≥ tα(n− 1)}.
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Similarly, if the alternative would have been left-sided, that is Ha : µ < µo,
then the critical region would have been

C = {(x1, x2, ..., xn) | t ≤ −tα(n− 1)}.
We summarize the three cases of hypotheses test of the mean (of the normal
population with unknown variance) in the following table.

Ho Ha Critical Region (or Test)

µ = µo µ > µo t = x−µo
s√
n
≥ tα(n− 1)

µ = µo µ < µo t = x−µo
s√
n
≤ −tα(n− 1)

µ = µo µ += µo |t| =
∣∣∣∣
x−µo

s√
n

∣∣∣∣ ≥ tα
2
(n− 1)

Example 18.21. Let X1, X2, ..., Xn be a random sample from a normal
population with mean µ and variance σ2. What is the likelihood ratio test
of significance of size α for testing the null hypothesis Ho : σ2 = σ2

o versus
Ha : σ2 += σ2

o?

Answer: In this example,
Ω =
{(

µ, σ2
)
∈ IR2 | −∞ < µ <∞, σ2 > 0

}
,

Ωo =
{(

µ, σ2
o

)
∈ IR2 | −∞ < µ <∞

}
,

Ωa =
{(

µ, σ2
)
∈ IR2 | −∞ < µ <∞, σ += σo

}
.

These sets are illustrated below.
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The likelihood function is given by

L
(
µ, σ2
)

=
n∏

i=1

(
1√

2πσ2

)
e−

1
2 ( xi−µ

σ )2

=
(

1√
2πσ2

)n

e−
1

2σ2

∑n

i=1
(xi−µ)2 .

Next, we find the maximum of L
(
µ, σ2
)

on the set Ωo. Since the set Ωo is
equal to

{(
µ, σ2

o

)
∈ IR2 | −∞ < µ <∞

}
, we have

max
(µ,σ2)∈Ωo

L
(
µ, σ2
)

= max
−∞<µ<∞

L
(
µ, σ2

o

)
.

Since L
(
µ, σ2

o

)
and lnL

(
µ, σ2

o

)
achieve the maximum at the same µ value, we

determine the value of µ where ln L
(
µ, σ2

o

)
achieves the maximum. Taking

the natural logarithm of the likelihood function, we get

ln
(
L
(
µ, σ2

o

))
= −n

2
ln(σ2

o)− n

2
ln(2π)− 1

2σ2
o

n∑

i=1

(xi − µ)2.

Differentiating lnL
(
µ, σ2

o

)
with respect to µ, we get from the last equality

d

dµ
ln
(
L
(
µ, σ2
))

=
1
σ2

o

n∑

i=1

(xi − µ).

Setting this derivative to zero and solving for µ, we obtain

µ = x.

Hence, we obtain

max
−∞<µ<∞

L
(
µ, σ2
)

=
(

1
2πσ2

o

)n
2

e
− 1

2σ2
o

∑n

i=1
(xi−x)2

Next, we determine the maximum of L
(
µ, σ2
)

on the set Ω. As before,
we consider ln L

(
µ, σ2
)

to determine where L
(
µ, σ2
)

achieves maximum.
Taking the natural logarithm of L

(
µ, σ2
)
, we obtain

ln
(
L
(
µ, σ2
))

= −n ln(σ)− n

2
ln(2π)− 1

2σ2

n∑

i=1

(xi − µ)2.
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Taking the partial derivatives of lnL
(
µ, σ2
)

first with respect to µ and then
with respect to σ2, we get

∂

∂µ
lnL
(
µ, σ2
)

=
1
σ2

n∑

i=1

(xi − µ),

and
∂

∂σ2
lnL
(
µ, σ2
)

= − n

2σ2
+

1
2σ4

n∑

i=1

(xi − µ)2,

respectively. Setting these partial derivatives to zero and solving for µ and
σ, we obtain

µ = x and σ2 =
n− 1

n
s2,

where s2 = 1
n−1

n∑

i=1

(xi − x)2 is the sample variance.

Letting these optimal values of µ and σ into L
(
µ, σ2
)
, we obtain

max
(µ,σ2)∈Ω

L
(
µ, σ2
)

=
(

n

2π(n− 1)s2

)n
2

e

− n
2(n−1)s2

n∑

i=1

(xi − x)2

.

Therefore

W (x1, x2, ..., xn) =
max

(µ,σ2)∈Ωo

L
(
µ, σ2
)

max
(µ,σ2)∈Ω

L
(
µ, σ2
)

=

(
1

2πσ2
o

)n
2

e
− 1

2σ2
o

∑n

i=1
(xi−x)2

(
n

2π(n−1)s2

)n
2

e
− n

2(n−1)s2

∑n

i=1
(xi−x)2

= n−n
2 e

n
2

(
(n− 1)s2

σ2
o

)n
2

e
− (n−1)s2

2σ2
o .

Now the inequality W (x1, x2, ..., xn) ≤ k becomes

n−n
2 e

n
2

(
(n− 1)s2

σ2
o

)n
2

e
− (n−1)s2

2σ2
o ≤ k

which is equivalent to
(

(n− 1)s2

σ2
o

)n

e
− (n−1)s2

σ2
o ≤
(

k
(n

e

)n
2
)2

:= Ko,
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where Ko is a constant. Let H be a function defined by

H(w) = wn e−w.

Using this, we see that the above inequality becomes

H

(
(n− 1)s2

σ2
o

)
≤ Ko.

The figure below illustrates this inequality.

From this it follows that

(n− 1)s2

σ2
o

≤ K1 or
(n− 1)s2

σ2
o

≥ K2.

In view of these inequalities, the critical region can be described as

C =
{

(x1, x2, ..., xn)
∣∣∣∣

(n− 1)s2

σ2
o

≤ K1 or
(n− 1)s2

σ2
o

≥ K2

}
,

and the best likelihood ratio test is: “Reject Ho if

(n− 1)S2

σ2
o

≤ K1 or
(n− 1)S2

σ2
o

≥ K2.”

Since we are given the size of the critical region to be α, we can determine the
constants K1 and K2. As the sample X1, X2, ..., Xn is taken from a normal
distribution with mean µ and variance σ2, we get

(n− 1)S2

σ2
o

∼ χ2(n− 1)
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when the null hypothesis Ho : σ2 = σ2
o is true.

Therefore, the likelihood ratio critical region C becomes
{

(x1, x2, ..., xn)
∣∣∣∣

(n− 1)s2

σ2
o

≤ χ2
α
2
(n− 1) or

(n− 1)s2

σ2
o

≥ χ2
1−α

2
(n− 1)

}

and the likelihood ratio test is: “Reject Ho : σ2 = σ2
o if

(n− 1)S2

σ2
o

≤ χ2
α
2
(n− 1) or

(n− 1)S2

σ2
o

≥ χ2
1−α

2
(n− 1)”

where χ2
α
2
(n − 1) is a real number such that the integral of the chi-square

density function with (n − 1) degrees of freedom from 0 to χ2
α
2
(n − 1) is α

2 .
Further, χ2

1−α
2
(n − 1) denotes the real number such that the integral of the

chi-square density function with (n−1) degrees of freedom from χ2
1−α

2
(n−1)

to ∞ is α
2 .

Remark 18.8. We summarize the three cases of hypotheses test of the
variance (of the normal population with unknown mean) in the following
table.

Ho Ha Critical Region (or Test)

σ2 = σ2
o σ2 > σ2

o χ2 = (n−1)s2

σ2
o

≥ χ2
1−α(n− 1)

σ2 = σ2
o σ2 < σ2

o χ2 = (n−1)s2

σ2
o

≤ χ2
α(n− 1)

σ2 = σ2
o σ2 += σ2

o χ2 = (n−1)s2

σ2
o

≥ χ2
1−α/2(n− 1)

or
χ2 = (n−1)s2

σ2
o

≤ χ2
α/2(n− 1)

18.5. Review Exercises

1. Five trials X1, X2, ..., X5 of a Bernoulli experiment were conducted to test
Ho : p = 1

2 against Ha : p = 3
4 . The null hypothesis Ho will be rejected if∑5

i=1 Xi = 5. Find the probability of Type I and Type II errors.

2. A manufacturer of car batteries claims that the life of his batteries is
normally distributed with a standard deviation equal to 0.9 year. If a random
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sample of 10 of these batteries has a standard deviation of 1.2 years, do you
think that σ > 0.9 year? Use a 0.05 level of significance.

3. Let X1, X2, ..., X8 be a random sample of size 8 from a Poisson distribution
with parameter λ. Reject the null hypothesis Ho : λ = 0.5 if the observed
sum
∑8

i=1 xi ≥ 8. First, compute the significance level α of the test. Second,
find the power function β(λ) of the test as a sum of Poisson probabilities
when Ha is true.

4. Suppose X has the density function

f(x) =

{ 1
θ for 0 < x < θ

0 otherwise.

If one observation of X is taken, what are the probabilities of Type I and
Type II errors in testing the null hypothesis Ho : θ = 1 against the alternative
hypothesis Ha : θ = 2, if Ho is rejected for X > 0.92.

5. Let X have the density function

f(x) =

{
(θ + 1) xθ for 0 < x < 1 where θ > 0

0 otherwise.

The hypothesis Ho : θ = 1 is to be rejected in favor of H1 : θ = 2 if X > 0.90.
What is the probability of Type I error?

6. Let X1, X2, ..., X6 be a random sample from a distribution with density
function

f(x) =

{
θ xθ−1 for 0 < x < 1 where θ > 0

0 otherwise.
The null hypothesis Ho : θ = 1 is to be rejected in favor of the alternative
Ha : θ > 1 if and only if at least 5 of the sample observations are larger than
0.7. What is the significance level of the test?

7. A researcher wants to test Ho : θ = 0 versus Ha : θ = 1, where θ is a
parameter of a population of interest. The statistic W , based on a random
sample of the population, is used to test the hypothesis. Suppose that under
Ho, W has a normal distribution with mean 0 and variance 1, and under Ha,
W has a normal distribution with mean 4 and variance 1. If Ho is rejected
when W > 1.50, then what are the probabilities of a Type I or Type II error
respectively?
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8. Let X1 and X2 be a random sample of size 2 from a normal distribution
N(µ, 1). Find the likelihood ratio critical region of size 0.005 for testing the
null hypothesis Ho : µ = 0 against the composite alternative Ha : µ += 0?

9. Let X1, X2, ..., X10 be a random sample from a Poisson distribution with
mean θ. What is the most powerful (or best) critical region of size 0.08 for
testing the null hypothesis H0 : θ = 0.1 against Ha : θ = 0.5?

10. Let X be a random sample of size 1 from a distribution with probability
density function

f(x, θ) =

{
(1− θ

2 ) + θ x if 0 ≤ x ≤ 1

0 otherwise.

For a significance level α = 0.1, what is the best (or uniformly most powerful)
critical region for testing the null hypothesis Ho : θ = −1 against Ha : θ = 1?

11. Let X1, X2 be a random sample of size 2 from a distribution with prob-
ability density function

f(x, θ) =






θx e−θ

x! if x = 0, 1, 2, 3, ....

0 otherwise,

where θ ≥ 0. For a significance level α = 0.053, what is the best critical
region for testing the null hypothesis Ho : θ = 1 against Ha : θ = 2? Sketch
the graph of the best critical region.

12. Let X1, X2, ..., X8 be a random sample of size 8 from a distribution with
probability density function

f(x, θ) =






θx e−θ

x! if x = 0, 1, 2, 3, ....

0 otherwise,

where θ ≥ 0. What is the likelihood ratio critical region for testing the null
hypothesis Ho : θ = 1 against Ha : θ += 1? If α = 0.1 can you determine the
best likelihood ratio critical region?

13. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
probability density function

f(x, θ) =






x6 e
− x
β

Γ(7)β7 , if x > 0

0 otherwise,
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where β ≥ 0. What is the likelihood ratio critical region for testing the null
hypothesis Ho : β = 5 against Ha : β += 5? What is the most powerful test ?

14. Let X1, X2, ..., X5 denote a random sample of size 5 from a population
X with probability density function

f(x; θ) =






(1− θ)x−1 θ if x = 1, 2, 3, ...,∞

0 otherwise,

where 0 < θ < 1 is a parameter. What is the likelihood ratio critical region
of size 0.05 for testing Ho : θ = 0.5 versus Ha : θ += 0.5?

15. Let X1, X2, X3 denote a random sample of size 3 from a population X

with probability density function

f(x; µ) =
1√
2π

e−
(x−µ)2

2 −∞ < x <∞,

where −∞ < µ < ∞ is a parameter. What is the likelihood ratio critical
region of size 0.05 for testing Ho : µ = 3 versus Ha : µ += 3?

16. Let X1, X2, X3 denote a random sample of size 3 from a population X

with probability density function

f(x; θ) =






1
θ e−

x
θ if 0 < x <∞

0 otherwise,

where 0 < θ < ∞ is a parameter. What is the likelihood ratio critical region
for testing Ho : θ = 3 versus Ha : θ += 3?

17. Let X1, X2, X3 denote a random sample of size 3 from a population X

with probability density function

f(x; θ) =






e−θ θx

x! if x = 0, 1, 2, 3, ...,∞

0 otherwise,

where 0 < θ < ∞ is a parameter. What is the likelihood ratio critical region
for testing Ho : θ = 0.1 versus Ha : θ += 0.1?

18. A box contains 4 marbles, θ of which are white and the rest are black.
A sample of size 2 is drawn to test Ho : θ = 2 versus Ha : θ += 2. If the null
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hypothesis is rejected if both marbles are the same color, find the significance
level of the test.

19. Let X1, X2, X3 denote a random sample of size 3 from a population X

with probability density function

f(x; θ) =






1
θ for 0 ≤ x ≤ θ

0 otherwise,

where 0 < θ < ∞ is a parameter. What is the likelihood ratio critical region
of size 117

125 for testing Ho : θ = 5 versus Ha : θ += 5?

20. Let X1, X2 and X3 denote three independent observations from a dis-
tribution with density

f(x;β) =






1
β e−

x
β for 0 < x <∞

0 otherwise,

where 0 < β < ∞ is a parameter. What is the best (or uniformly most
powerful critical region for testing Ho : β = 5 versus Ha : β = 10?

21. Suppose X has the density function

f(x) =

{ 1
θ for 0 < x < θ

0 otherwise.

If X1, X2, X3, X4 is a random sample of size 4 taken from X, what are the
probabilities of Type I and Type II errors in testing the null hypothesis
Ho : θ = 1 against the alternative hypothesis Ha : θ = 2, if Ho is rejected for
max{X1, X2, X3, X4} ≤ 1

2 .

22. Let X1, X2, X3 denote a random sample of size 3 from a population X

with probability density function

f(x; θ) =






1
θ e−

x
θ if 0 < x <∞

0 otherwise,

where 0 < θ < ∞ is a parameter. The null hypothesis Ho : θ = 3 is to be
rejected in favor of the alternative Ha : θ += 3 if and only if X > 6.296. What
is the significance level of the test?
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Chapter 19

SIMPLE LINEAR
REGRESSION

AND
CORRELATION ANALYSIS

Let X and Y be two random variables with joint probability density
function f(x, y). Then the conditional density of Y given that X = x is

f(y/x) =
f(x, y)
g(x)

where
g(x) =

∫ ∞

−∞
f(x, y) dy

is the marginal density of X. The conditional mean of Y

E (Y |X = x) =
∫ ∞

−∞
yf(y/x) dy

is called the regression equation of Y on X.

Example 19.1. Let X and Y be two random variables with the joint prob-
ability density function

f(x, y) =

{
xe−x(1+y) if x > 0, y > 0

0 otherwise.

Find the regression equation of Y on X and then sketch the regression curve.



Graph of the regression equation E(Y/x) = 1/ x
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Answer: The marginal density of X is given by

g(x) =
∫ ∞

−∞
xe−x(1+y) dy

=
∫ ∞

−∞
xe−x e−xy dy

= xe−x

∫ ∞

−∞
e−xy dy

= xe−x

[
− 1

x
e−xy

]∞

0

= e−x.

The conditional density of Y given X = x is

f(y/x) =
f(x, y)
g(x)

=
xe−x(1+y)

e−x
= xe−xy, y > 0.

The conditional mean of Y given X = x is given by

E(Y/x) =
∫ ∞

−∞
yf(y/x) dy =

∫ ∞

−∞
y x e−xy dy =

1
x

.

Thus the regression equation of Y on X is

E(Y/x) =
1
x

, x > 0.

The graph of this equation of Y on X is shown below.
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From this example it is clear that the conditional mean E(Y/x) is a
function of x. If this function is of the form α + βx, then the correspond-
ing regression equation is called a linear regression equation; otherwise it is
called a nonlinear regression equation. The term linear regression refers to
a specification that is linear in the parameters. Thus E(Y/x) = α + βx2 is
also a linear regression equation. The regression equation E(Y/x) = αxβ is
an example of a nonlinear regression equation.

The main purpose of regression analysis is to predict Yi from the knowl-
edge of xi using the relationship like

E(Yi/xi) = α+ βxi.

The Yi is called the response or dependent variable where as xi is called the
predictor or independent variable. The term regression has an interesting his-
tory, dating back to Francis Galton (1822-1911). Galton studied the heights
of fathers and sons, in which he observed a regression (a “turning back”)
from the heights of sons to the heights of their fathers. That is tall fathers
tend to have tall sons and short fathers tend to have short sons. However,
he also found that very tall fathers tend to have shorter sons and very short
fathers tend to have taller sons. Galton called this phenomenon regression
towards the mean.

In regression analysis, that is when investigating the relationship be-
tween a predictor and response variable, there are two steps to the analysis.
The first step is totally data oriented. This step is always performed. The
second step is the statistical one, in which we draw conclusions about the
(population) regression equation E(Yi/xi). Normally the regression equa-
tion contains several parameters. There are two well known methods for
finding the estimates of the parameters of the regression equation. These
two methods are: (1) The least square method and (2) the normal regression
method.

19.1. The Least Squares Method

Let {(xi, yi) | i = 1, 2, ..., n} be a set of data. Assume that

E(Yi/xi) = α+ βxi, (1)

that is
yi = α+ βxi, i = 1, 2, ..., n.
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Then the sum of the squares of the error is given by

E(α, β) =
n∑

i=1

(yi − α− βxi)
2 . (2)

The least squares estimates of α and β are defined to be those values which
minimize E(α, β). That is,

(
α̂, β̂
)

= arg min
(α,β)

E(α, β).

This least squares method is due to Adrien M. Legendre (1752-1833). Note
that the least squares method also works even if the regression equation is
nonlinear (that is, not of the form (1)).

Next, we give several examples to illustrate the method of least squares.

Example 19.2. Given the five pairs of points (x, y) shown in table below

x 4 0 −2 3 1
y 5 0 0 6 3

what is the line of the form y = x + b best fits the data by method of least
squares?

Answer: Suppose the best fit line is y = x + b. Then for each xi, xi + b is
the estimated value of yi. The difference between yi and the estimated value
of yi is the error or the residual corresponding to the ith measurement. That
is, the error corresponding to the ith measurement is given by

εi = yi − xi − b.

Hence the sum of the squares of the errors is

E(b) =
5∑

i=1

ε2i

=
5∑

i=1

(yi − xi − b)2 .

Differentiating E(b) with respect to b, we get

d

db
E(b) = 2

5∑

i=1

(yi − xi − b) (−1).
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Setting d
dbE(b) equal to 0, we get

5∑

i=1

(yi − xi − b) = 0

which is

5b =
5∑

i=1

yi −
5∑

i=1

xi.

Using the data, we see that
5b = 14− 6

which yields b = 8
5 . Hence the best fitted line is

y = x +
8
5
.

Example 19.3. Suppose the line y = bx + 1 is fit by the method of least
squares to the 3 data points

x 1 2 4
y 2 2 0

What is the value of the constant b?

Answer: The error corresponding to the ith measurement is given by

εi = yi − bxi − 1.

Hence the sum of the squares of the errors is

E(b) =
3∑

i=1

ε2i

=
3∑

i=1

(yi − bxi − 1)2 .

Differentiating E(b) with respect to b, we get

d

db
E(b) = 2

3∑

i=1

(yi − bxi − 1) (−xi).
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Setting d
dbE(b) equal to 0, we get

3∑

i=1

(yi − bxi − 1) xi = 0

which in turn yields

b =

n∑

i=1

xiyi −
n∑

i=1

xi

n∑

i=1

x2
i

Using the given data we see that

b =
6− 7
21

= − 1
21

,

and the best fitted line is
y = − 1

21
x + 1.

Example 19.4. Observations y1, y2, ..., yn are assumed to come from a model
with

E(Yi/xi) = θ + 2 lnxi

where θ is an unknown parameter and x1, x2, ..., xn are given constants. What
is the least square estimate of the parameter θ?

Answer: The sum of the squares of errors is

E(θ) =
n∑

i=1

ε2i =
n∑

i=1

(yi − θ − 2 lnxi)
2 .

Differentiating E(θ) with respect to θ, we get

d

dθ
E(θ) = 2

n∑

i=1

(yi − θ − 2 lnxi) (−1).

Setting d
dθE(θ) equal to 0, we get

n∑

i=1

(yi − θ − 2 lnxi) = 0

which is

θ =
1
n

(
n∑

i=1

yi − 2
n∑

i=1

lnxi

)
.
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Hence the least squares estimate of θ is θ̂ = y − 2
n

n∑

i=1

lnxi.

Example 19.5. Given the three pairs of points (x, y) shown below:

x 4 1 2
y 2 1 0

What is the curve of the form y = xβ best fits the data by method of least
squares?

Answer: The sum of the squares of the errors is given by

E(β) =
n∑

i=1

ε2i

=
n∑

i=1

(
yi − xβ

i

)2
.

Differentiating E(β) with respect to β, we get

d

dβ
E(β) = 2

n∑

i=1

(
yi − xβ

i

)
(−xβ

i lnxi)

Setting this derivative d
dβE(β) to 0, we get

n∑

i=1

yix
β
i lnxi =

n∑

i=1

xβ
i xβ

i lnxi.

Using the given data we obtain

(2) 4β ln 4 = 42β ln 4 + 22β ln 2

which simplifies to
4 = (2) 4β + 1

or
4β =

3
2
.

Taking the natural logarithm of both sides of the above expression, we get

β =
ln 3− ln 2

ln 4
= 0.2925
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Thus the least squares best fit model is y = x0.2925.

Example 19.6. Observations y1, y2, ..., yn are assumed to come from a model
with E(Yi/xi) = α + βxi, where α and β are unknown parameters, and
x1, x2, ..., xn are given constants. What are the least squares estimate of the
parameters α and β?

Answer: The sum of the squares of the errors is given by

E(α, β) =
n∑

i=1

ε2i

=
n∑

i=1

(yi −−α− βxi)
2 .

Differentiating E(α, β) with respect to α and β respectively, we get

∂

∂α
E(α, β) = 2

n∑

i=1

(yi − α− βxi) (−1)

and
∂

∂β
E(α, β) = 2

n∑

i=1

(yi − α− βxi) (−xi).

Setting these partial derivatives ∂
∂αE(α, β) and ∂

∂βE(α, β) to 0, we get

n∑

i=1

(yi − α− βxi) = 0 (3)

and
n∑

i=1

(yi − α− βxi) xi = 0. (4)

From (3), we obtain
n∑

i=1

yi = nα+ β
n∑

i=1

xi

which is
y = α+ β x. (5)

Similarly, from (4), we have

n∑

i=1

xiyi = α
n∑

i=1

xi + β
n∑

i=1

x2
i
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which can be rewritten as follows

n∑

i=1

(xi − x)(yi − y) + nx y = nαx + β
n∑

i=1

(xi − x)(xi − x) + nβ x2 (6)

Defining

Sxy :=
n∑

i=1

(xi − x)(yi − y)

we see that (6) reduces to

Sxy + nx y = αn x + β
[
Sxx + nx2

]
(7)

Substituting (5) into (7), we have

Sxy + nx y = [y − β x] n x + β
[
Sxx + nx2

]
.

Simplifying the last equation, we get

Sxy = β Sxx

which is
β =

Sxy

Sxx
. (8)

In view of (8) and (5), we get

α = y − Sxy

Sxx
x. (9)

Thus the least squares estimates of α and β are

α̂ = y − Sxy

Sxx
x and β̂ =

Sxy

Sxx
,

respectively.

We need some notations. The random variable Y given X = x will be
denoted by Yx. Note that this is the variable appears in the model E(Y/x) =
α+βx. When one chooses in succession values x1, x2, ..., xn for x, a sequence
Yx1 , Yx2 , ..., Yxn of random variable is obtained. For the sake of convenience,
we denote the random variables Yx1 , Yx2 , ..., Yxn simply as Y1, Y2, ..., Yn. To
do some statistical analysis, we make following three assumptions:

(1) E(Yx) = α+ β x so that µi = E(Yi) = α+ β xi;
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(2) Y1, Y2, ..., Yn are independent;

(3) Each of the random variables Y1, Y2, ..., Yn has the same variance σ2.

Theorem 19.1. Under the above three assumptions, the least squares esti-
mators α̂ and β̂ of a linear model E(Y/x) = α+ β x are unbiased.

Proof: From the previous example, we know that the least squares estima-
tors of α and β are

α̂ = Y − SxY

Sxx
X and β̂ =

SxY

Sxx
,

where

SxY :=
n∑

i=1

(xi − x)(Yi − Y ).

First, we show β̂ is unbiased. Consider

E
(
β̂
)

= E

(
SxY

Sxx

)
=

1
Sxx

E (SxY )

=
1

Sxx
E

(
n∑

i=1

(xi − x)(Yi − Y )

)

=
1

Sxx

n∑

i=1

(xi − x) E
(
Yi − Y

)

=
1

Sxx

n∑

i=1

(xi − x) E (Yi)−
1

Sxx

n∑

i=1

(xi − x) E
(
Y
)

=
1

Sxx

n∑

i=1

(xi − x) E (Yi)−
1

Sxx
E
(
Y
) n∑

i=1

(xi − x)

=
1

Sxx

n∑

i=1

(xi − x) E (Yi) =
1

Sxx

n∑

i=1

(xi − x) (α+ βxi)

= α
1

Sxx

n∑

i=1

(xi − x) + β
1

Sxx

n∑

i=1

(xi − x) xi

= β
1

Sxx

n∑

i=1

(xi − x) xi

= β
1

Sxx

n∑

i=1

(xi − x) xi − β
1

Sxx

n∑

i=1

(xi − x) x

= β
1

Sxx

n∑

i=1

(xi − x) (xi − x)

= β
1

Sxx
Sxx = β.
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Thus the estimator β̂ is unbiased estimator of the parameter β.

Next, we show that α̂ is also an unbiased estimator of α. Consider

E (α̂) = E

(
Y − SxY

Sxx
x

)
= E
(
Y
)
− x E

(
SxY

Sxx

)

= E
(
Y
)
− x E
(
β̂
)

= E
(
Y
)
− x β

=
1
n

(
n∑

i=1

E (Yi)

)
− x β

=
1
n

(
n∑

i=1

E (α+ βxi)

)
− x β

=
1
n

(
nα+ β

n∑

i=1

xi

)
− x β

= α+ β x− x β = α

This proves that α̂ is an unbiased estimator of α and the proof of the theorem
is now complete.

19.2. The Normal Regression Analysis

In a regression analysis, we assume that the xi’s are constants while yi’s
are values of the random variables Yi’s. A regression analysis is called a
normal regression analysis if the conditional density of Yi given Xi = xi is of
the form

f(yi/xi) =
1√

2πσ2
e
− 1

2

(
yi−α−βxi

σ

)2
,

where σ2 denotes the variance, and α and β are the regression coefficients.
That is Y |xi ∼ N(α + βx, σ2). If there is no danger of confusion, then we
will write Yi for Y |xi . The figure on the next page shows the regression
model of Y with equal variances, and with means falling on the straight line
µy = α+ β x.

Normal regression analysis concerns with the estimation of σ, α, and
β. We use maximum likelihood method to estimate these parameters. The
maximum likelihood function of the sample is given by

L(σ, α, β) =
n∏

i=1

f(yi/xi)
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and

lnL(σ, α, β) =
n∑

i=1

ln f(yi/xi)

= −n lnσ − n

2
ln(2π)− 1

2σ2

n∑

i=1

(yi − α− β xi)
2 .

Taking the partial derivatives of lnL(σ, α, β) with respect to α, β and σ
respectively, we get

∂

∂α
lnL(σ, α, β) =

1
σ2

n∑

i=1

(yi − α− β xi)

∂

∂β
lnL(σ, α, β) =

1
σ2

n∑

i=1

(yi − α− β xi) xi

∂

∂σ
lnL(σ, α, β) = −n

σ
+

1
σ3

n∑

i=1

(yi − α− β xi)
2 .

Equating each of these partial derivatives to zero and solving the system of
three equations, we obtain the maximum likelihood estimator of β, α, σ as

β̂ =
SxY

Sxx
, α̂ = Y − SxY

Sxx
x, and σ̂ =

√
1
n

[
SY Y −

SxY

Sxx
SxY

]
,
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where

SxY =
n∑

i=1

(xi − x)
(
Yi − Y

)
.

Theorem 19.2. In the normal regression analysis, the likelihood estimators
β̂ and α̂ are unbiased estimators of β and α, respectively.

Proof: Recall that

β̂ =
SxY

Sxx

=
1

Sxx

n∑

i=1

(xi − x)
(
Yi − Y

)

=
n∑

i=1

(
xi − x

Sxx

)
Yi,

where Sxx =
∑n

i=1 (xi − x)2. Thus β̂ is a linear combination of Yi’s. Since
Yi ∼ N

(
α+ βxi, σ2

)
, we see that β̂ is also a normal random variable.

First we show β̂ is an unbiased estimator of β. Since

E
(
β̂
)

= E

(
n∑

i=1

(
xi − x

Sxx

)
Yi

)

=
n∑

i=1

(
xi − x

Sxx

)
E (Yi)

=
n∑

i=1

(
xi − x

Sxx

)
(α+ βxi) = β,

the maximum likelihood estimator of β is unbiased.

Next, we show that α̂ is also an unbiased estimator of α. Consider

E (α̂) = E

(
Y − SxY

Sxx
x

)
= E
(
Y
)
− x E

(
SxY

Sxx

)

= E
(
Y
)
− x E
(
β̂
)

= E
(
Y
)
− x β

=
1
n

(
n∑

i=1

E (Yi)

)
− x β

=
1
n

(
n∑

i=1

E (α+ βxi)

)
− x β

=
1
n

(
nα+ β

n∑

i=1

xi

)
− x β

= α+ β x− x β = α.
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This proves that α̂ is an unbiased estimator of α and the proof of the theorem
is now complete.

Theorem 19.3. In normal regression analysis, the distributions of the esti-
mators β̂ and α̂ are given by

β̂ ∼ N

(
β,
σ2

Sxx

)
and α̂ ∼ N

(
α,
σ2

n
+

x2σ2

Sxx

)

where

Sxx =
n∑

i=1

(xi − x)2 .

Proof: Since
β̂ =

SxY

Sxx

=
1

Sxx

n∑

i=1

(xi − x)
(
Yi − Y

)

=
n∑

i=1

(
xi − x

Sxx

)
Yi,

the β̂ is a linear combination of Yi’s. As Yi ∼ N
(
α+ βxi, σ2

)
, we see that

β̂ is also a normal random variable. By Theorem 19.2, β̂ is an unbiased
estimator of β.

The variance of β̂ is given by

V ar
(
β̂
)

=
n∑

i=1

(
xi − x

Sxx

)2

V ar (Yi/xi)

=
n∑

i=1

(
xi − x

Sxx

)2

σ2

=
1

S2
xx

n∑

i=1

(xi − x)2 σ2

=
σ2

Sxx
.

Hence β̂ is a normal random variable with mean (or expected value) β and
variance σ2

Sxx
. That is β̂ ∼ N

(
β, σ2

Sxx

)
.

Now determine the distribution of α̂. Since each Yi ∼ N(α + βxi, σ2),
the distribution of Y is given by

Y ∼ N

(
α+ βx,

σ2

n

)
.



Probability and Mathematical Statistics 591

Since
β̂ ∼ N

(
β,
σ2

Sxx

)

the distribution of x β̂ is given by

x β̂ ∼ N

(
xβ, x2 σ

2

Sxx

)
.

Since α̂ = Y − x β̂ and Y and x β̂ being two normal random variables, α̂ is
also a normal random variable with mean equal to α + β x − β x = α and
variance variance equal to σ2

n + x2 σ2

Sxx
. That is

α̂ ∼ N

(
α,
σ2

n
+

x2σ2

Sxx

)

and the proof of the theorem is now complete.

It should be noted that in the proof of the last theorem, we have assumed
the fact that Y and x β̂ are statistically independent.

In the next theorem, we give an unbiased estimator of the variance σ2.
For this we need the distribution of the statistic U given by

U =
n σ̂2

σ2
.

It can be shown (we will omit the proof, for a proof see Graybill (1961)) that
the distribution of the statistic

U =
n σ̂2

σ2
∼ χ2(n− 2).

Theorem 19.4. An unbiased estimator S2 of σ2 is given by

S2 =
n σ̂2

n− 2
,

where σ̂ =
√

1
n

[
SY Y − SxY

Sxx
SxY

]
.

Proof: Since
E(S2) = E

(
n σ̂2

n− 2

)

=
σ2

n− 2
E

(
n σ̂2

σ2

)

=
σ2

n− 2
E(χ2(n− 2))

=
σ2

n− 2
(n− 2) = σ2.
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The proof of the theorem is now complete.
Note that the estimator S2 can be written as S2 = SSE

n−2 , where

SSE = SY Y = β̂ SxY =
2∑

i=1

[yi − α̂− β̂ xi]

the estimator S2 is unbiased estimator of σ2. The proof of the theorem is
now complete.

In the next theorem we give the distribution of two statistics that can
be used for testing hypothesis and constructing confidence interval for the
regression parameters α and β.

Theorem 19.5. The statistics

Qβ =
β̂ − β
σ̂

√
(n− 2) Sxx

n

and

Qα =
α̂− α
σ̂

√
(n− 2) Sxx

n (x)2 + Sxx

have both a t-distribution with n− 2 degrees of freedom.

Proof: From Theorem 19.3, we know that

β̂ ∼ N

(
β,
σ2

Sxx

)
.

Hence by standardizing, we get

Z =
β̂ − β√

σ2

Sxx

∼ N(0, 1).

Further, we know that the likelihood estimator of σ is

σ̂ =

√
1
n

[
SY Y −

SxY

Sxx
SxY

]

and the distribution of the statistic U = n σ̂2

σ2 is chi-square with n−2 degrees
of freedom.
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Since Z = β̂−β√
σ2

Sxx

∼ N(0, 1) and U = n σ̂2

σ2 ∼ χ2(n−2), by Theorem 14.6,

the statistic Z√
U

n−2

∼ t(n− 2). Hence

Qβ =
β̂ − β
σ̂

√
(n− 2) Sxx

n
=

β̂ − β√
n σ̂2

(n−2) Sxx

=

β̂−β√
σ2

Sxx√
n σ̂2

(n−2)σ2

∼ t(n− 2).

Similarly, it can be shown that

Qα =
α̂− α
σ̂

√
(n− 2) Sxx

n (x)2 + Sxx

∼ t(n− 2).

This completes the proof of the theorem.

In the normal regression model, if β = 0, then E(Yx) = α. This implies
that E(Yx) does not depend on x. Therefore if β += 0, then E(Yx) is de-
pendent on x. Thus the null hypothesis Ho : β = 0 should be tested against
Ha : β += 0. To devise a test we need the distribution of β̂. Theorem 19.3 says
that β̂ is normally distributed with mean β and variance σ2

Sxx . Therefore, we
have

Z =
β̂ − β√

σ2

Sxx

∼ N(0, 1).

In practice the variance V ar(Yi/xi) which is σ2 is usually unknown. Hence
the above statistic Z is not very useful. However, using the statistic Qβ ,
we can devise a hypothesis test to test the hypothesis Ho : β = βo against
Ha : β += βo at a significance level γ. For this one has to evaluate the quantity

|t| =

∣∣∣∣∣∣
β̂ − β√

n σ̂2

(n−2) Sxx

∣∣∣∣∣∣

=

∣∣∣∣∣
β̂ − β
σ̂

√
(n− 2) Sxx

n

∣∣∣∣∣

and compare it to quantile tγ/2(n − 2). The hypothesis test, at significance
level γ, is then “Reject Ho : β = βo if |t| > tγ/2(n− 2)”.

The statistic

Qβ =
β̂ − β
σ̂

√
(n− 2) Sxx

n
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is a pivotal quantity for the parameter β since the distribution of this quantity
Qβ is a t-distribution with n− 2 degrees of freedom. Thus it can be used for
the construction of a (1− γ)100% confidence interval for the parameter β as
follows:

1− γ

= P

(
−t γ

2
(n− 2) ≤ β̂ − β

σ̂

√
(n− 2)Sxx

n
≤ t γ

2
(n− 2)

)

= P

(
β̂ − t γ

2
(n− 2)σ̂

√
n

(n− 2)Sxx
≤ β ≤ β̂ + t γ

2
(n− 2)σ̂

√
n

(n− 2) Sxx

)
.

Hence, the (1− γ)% confidence interval for β is given by
[
β̂ − t γ

2
(n− 2) σ̂

√
n

(n− 2) Sxx
, β̂ + t γ

2
(n− 2) σ̂

√
n

(n− 2) Sxx

]
.

In a similar manner one can devise hypothesis test for α and construct
confidence interval for α using the statistic Qα. We leave these to the reader.

Now we give two examples to illustrate how to find the normal regression
line and related things.

Example 19.7. Let the following data on the number of hours, x which
ten persons studied for a French test and their scores, y on the test is shown
below:

x 4 9 10 14 4 7 12 22 1 17
y 31 58 65 73 37 44 60 91 21 84

Find the normal regression line that approximates the regression of test scores
on the number of hours studied. Further test the hypothesis Ho : β = 3 versus
Ha : β += 3 at the significance level 0.02.

Answer: From the above data, we have

10∑

i=1

xi = 100,
10∑

i=1

x2
i = 1376

10∑

i=1

yi = 564,
10∑

i=1

y2
i =

10∑

i=1

xiyi = 6945
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Sxx = 376, Sxy = 1305, Syy = 4752.4.

Hence
β̂ =

sxy

sxx
= 3.471 and α̂ = y − β̂ x = 21.690.

Thus the normal regression line is

y = 21.690 + 3.471x.

This regression line is shown below.

Now we test the hypothesis Ho : β = 3 against Ha : β += 3 at 0.02 level
of significance. From the data, the maximum likelihood estimate of σ is

σ̂ =

√
1
n

[
Syy −

Sxy

Sxx
Sxy

]

=
√

1
n

[
Syy − β̂ Sxy

]

=
√

1
10

[4752.4− (3.471)(1305)]

= 4.720
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and

|t| =

∣∣∣∣∣
3.471− 3

4.720

√
(8) (376)

10

∣∣∣∣∣ = 1.73.

Hence
1.73 = |t| < t0.01(8) = 2.896.

Thus we do not reject the null hypothesis that Ho : β = 3 at the significance
level 0.02.

This means that we can not conclude that on the average an extra hour
of study will increase the score by more than 3 points.

Example 19.8. The frequency of chirping of a cricket is thought to be
related to temperature. This suggests the possibility that temperature can
be estimated from the chirp frequency. Let the following data on the number
chirps per second, x by the striped ground cricket and the temperature, y in
Fahrenheit is shown below:

x 20 16 20 18 17 16 15 17 15 16
y 89 72 93 84 81 75 70 82 69 83

Find the normal regression line that approximates the regression of tempera-
ture on the number chirps per second by the striped ground cricket. Further
test the hypothesis Ho : β = 4 versus Ha : β += 4 at the significance level 0.1.

Answer: From the above data, we have

10∑

i=1

xi = 170,
10∑

i=1

x2
i = 2920

10∑

i=1

yi = 789,
10∑

i=1

y2
i = 64270

10∑

i=1

xiyi = 13688

Sxx = 376, Sxy = 1305, Syy = 4752.4.

Hence
β̂ =

sxy

sxx
= 4.067 and α̂ = y − β̂ x = 9.761.

Thus the normal regression line is

y = 9.761 + 4.067x.
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This regression line is shown below.

Now we test the hypothesis Ho : β = 4 against Ha : β += 4 at 0.1 level of
significance. From the data, the maximum likelihood estimate of σ is

σ̂ =

√
1
n

[
Syy −

Sxy

Sxx
Sxy

]

=
√

1
n

[
Syy − β̂ Sxy

]

=
√

1
10

[589− (4.067)(122)]

= 3.047

and

|t| =

∣∣∣∣∣
4.067− 4

3.047

√
(8) (30)

10

∣∣∣∣∣ = 0.528.

Hence
0.528 = |t| < t0.05(8) = 1.860.
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Thus we do not reject the null hypothesis that Ho : β = 4 at a significance
level 0.1.

Let µx = α + β x and write Ŷx = α̂ + β̂ x for an arbitrary but fixed x.
Then Ŷx is an estimator of µx. The following theorem gives various properties
of this estimator.

Theorem 19.6. Let x be an arbitrary but fixed real number. Then
(i) Ŷx is a linear estimator of Y1, Y2, ..., Yn,
(ii) Ŷx is an unbiased estimator of µx, and

(iii) V ar
(
Ŷx

)
=
{

1
n + (x−x)2

Sxx

}
σ2.

Proof: First we show that Ŷx is a linear estimator of Y1, Y2, ..., Yn. Since

Ŷx = α̂+ β̂ x

= Y − β̂x + β̂ x

= Y + β̂ (x− x)

= Y +
n∑

k=1

(xk − x) (x− x)
Sxx

Yk

=
n∑

k=1

Yk

n
+

n∑

k=1

(xk − x) (x− x)
Sxx

Yk

=
n∑

k=1

(
1
n

+
(xk − x) (x− x)

Sxx

)
Yk

Ŷx is a linear estimator of Y1, Y2, ..., Yn.

Next, we show that Ŷx is an unbiased estimator of µx. Since

E
(
Ŷx

)
= E
(
α̂+ β̂ x

)

= E (α̂) + E
(
β̂ x
)

= α+ β x

= µx

Ŷx is an unbiased estimator of µx.

Finally, we calculate the variance of Ŷx using Theorem 19.3. The variance
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of Ŷx is given by

V ar
(
Ŷx

)
= V ar

(
α̂+ β̂ x

)

= V ar (α̂) + V ar
(
β̂ x
)

+ 2Cov
(
α̂, β̂ x
)

=
(

1
n

+
x2

Sxx

)
+ x2 σ

2

Sxx
+ 2 x Cov

(
α̂, β̂
)

=
(

1
n

+
x2

Sxx

)
− 2 x

xσ2

Sxx

=
(

1
n

+
(x− x)2

Sxx

)
σ2.

In this computation we have used the fact that

Cov
(
α̂, β̂
)

= −xσ2

Sxx

whose proof is left to the reader as an exercise. The proof of the theorem is
now complete.

By Theorem 19.3, we see that

β̂ ∼ N

(
β,
σ2

Sxx

)
and α̂ ∼ N

(
α,
σ2

n
+

x2σ2

Sxx

)
.

Since Ŷx = α̂+ β̂ x, the random variable Ŷx is also a normal random variable
with mean µx and variance

V ar
(
Ŷx

)
=
(

1
n

+
(x− x)2

Sxx

)
σ2.

Hence standardizing Ŷx, we have

Ŷx − µx√
V ar
(
Ŷx

) ∼ N(0, 1).

If σ2 is known, then one can take the statistic Q = Ŷx−µx√
V ar
(
Ŷx

) as a pivotal

quantity to construct a confidence interval for µx. The (1−γ)100% confidence
interval for µx when σ2 is known is given by

[
Ŷx − z γ

2

√
V ar(Ŷx), Ŷx + z γ

2

√
V ar(Ŷx)

]
.
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Example 19.9. Let the following data on the number chirps per second, x

by the striped ground cricket and the temperature, y in Fahrenheit is shown
below:

x 20 16 20 18 17 16 15 17 15 16
y 89 72 93 84 81 75 70 82 69 83

What is the 95% confidence interval for β? What is the 95% confidence
interval for µx when x = 14 and σ = 3.047?

Answer: From Example 19.8, we have

n = 10, β̂ = 4.067, σ̂ = 3.047 and Sxx = 376.

The (1− γ)% confidence interval for β is given by
[
β̂ − t γ

2
(n− 2) σ̂

√
n

(n− 2) Sxx
, β̂ + t γ

2
(n− 2) σ̂

√
n

(n− 2) Sxx

]
.

Therefore the 90% confidence interval for β is
[

4.067− t0.025(8) (3.047)

√
10

(8) (376)
, 4.067 + t0.025(8) (3.047)

√
10

(8) (376)

]

which is

[ 4.067− t0.025(8) (0.1755) , 4.067 + t0.025(8) (0.1755)] .

Since from the t-table, we have t0.025(8) = 2.306, the 90% confidence interval
for β becomes

[ 4.067− (2.306) (0.1755) , 4.067 + (2.306) (0.1755)]

which is [3.6623, 4.4717].
If variance σ2 is not known, then we can use the fact that the statistic

U = n σ̂2

σ2 is chi-squares with n − 2 degrees of freedom to obtain a pivotal
quantity for µx. This can be done as follows:

Q =
Ŷx − µx

σ̂

√
(n− 2) Sxx

Sxx + n (x− x)2

=

Ŷx−µx√(
1
n + (x−x)2

Sxx

)
σ2

√
n σ̂2

(n−2)σ2

∼ t(n− 2).
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Using this pivotal quantity one can construct a (1 − γ)100% confidence in-
terval for mean µ as

[
Ŷx − t γ

2
(n− 2)

√
Sxx + n(x− x)2

(n− 2) Sxx
, Ŷx + t γ

2
(n− 2)

√
Sxx + n(x− x)2

(n− 2) Sxx

]
.

Next we determine the 90% confidence interval for µx when x = 14 and
σ = 3.047. The (1− γ)100% confidence interval for µx when σ2 is known is
given by [

Ŷx − z γ
2

√
V ar(Ŷx), Ŷx + z γ

2

√
V ar(Ŷx)

]
.

From the data, we have

Ŷx = α̂+ β̂ x = 9.761 + (4.067) (14) = 66.699

and

V ar
(
Ŷx

)
=
(

1
10

+
(14− 17)2

376

)
σ2 = (0.124) (3.047)2 = 1.1512.

The 90% confidence interval for µx is given by
[
66.699− z0.025

√
1.1512, 66.699 + z0.025

√
1.1512

]

and since z0.025 = 1.96 (from the normal table), we have

[66.699− (1.96) (1.073), 66.699 + (1.96) (1.073)]

which is [64.596, 68.802].

We now consider the predictions made by the normal regression equation
Ŷx = α̂ + β̂x. The quantity Ŷx gives an estimate of µx = α + βx. Each
time we compute a regression line from a random sample we are observing
one possible linear equation in a population consisting all possible linear
equations. Further, the actual value of Yx that will be observed for given
value of x is normal with mean α + βx and variance σ2. So the actual
observed value will be different from µx. Thus, the predicted value for Ŷx

will be in error from two different sources, namely (1) α̂ and β̂ are randomly
distributed about α and β, and (2) Yx is randomly distributed about µx.
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Let yx denote the actual value of Yx that will be observed for the value
x and consider the random variable

D = Yx − α̂− β̂ x.

Since D is a linear combination of normal random variables, D is also a
normal random variable.

The mean of D is given by

E(D) = E(Yx)− E(α̂)− x E(β̂)

= α+ β x− α− xβ

= 0.

The variance of D is given by

V ar(D) = V ar(Yx − α̂− β̂ x)

= V ar(Yx) + V ar(α̂) + x2 V ar(β̂) + 2 x Cov(α̂, β̂)

= σ2 +
σ2

n
+

x2 σ2

Sxx
+ x2 σ

2

Sxx
− 2 x

x

Sxx

= σ2 +
σ2

n
+

(x− x)2 σ2

Sxx

=
(n + 1) Sxx + n

n Sxx
σ2.

Therefore

D ∼ N

(
0,

(n + 1) Sxx + n

n Sxx
σ2

)
.

We standardize D to get

Z =
D − 0√

(n+1) Sxx+n
n Sxx

σ2
∼ N(0, 1).

Since in practice the variance of Yx which is σ2 is unknown, we can not use
Z to construct a confidence interval for a predicted value yx.

We know that U = n σ̂2

σ2 ∼ χ2(n − 2). By Theorem 14.6, the statistic
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Z√
U

n−2

∼ t(n− 2). Hence

Q =
yx − α̂− β̂ x

σ̂

√
(n− 2) Sxx

(n + 1) Sxx + n

=

yx−α̂−β̂ x√
(n+1) Sxx+n

n Sxx
σ2

√
n σ̂2

(n−2)σ2

=

D−0√
V ar(D)√

n σ̂2

(n−2)σ2

=
Z√

U
n−2

∼ t(n− 2).

The statistic Q is a pivotal quantity for the predicted value yx and one can
use it to construct a (1−γ)100% confidence interval for yx. The (1−γ)100%
confidence interval, [a, b], for yx is given by

1− γ = P
(
−t γ

2
(n− 2) ≤ Q ≤ t γ

2
(n− 2)

)

= P (a ≤ yx ≤ b),

where

a = α̂+ β̂ x− t γ
2
(n− 2) σ̂

√
(n + 1) Sxx + n

(n− 2) Sxx

and

b = α̂+ β̂ x + t γ
2
(n− 2) σ̂

√
(n + 1) Sxx + n

(n− 2) Sxx
.

This confidence interval for yx is usually known as the prediction interval for
predicted value yx based on the given x. The prediction interval represents an
interval that has a probability equal to 1−γ of containing not a parameter but
a future value yx of the random variable Yx. In many instances the prediction
interval is more relevant to a scientist or engineer than the confidence interval
on the mean µx.

Example 19.10. Let the following data on the number chirps per second, x

by the striped ground cricket and the temperature, y in Fahrenheit is shown
below:
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x 20 16 20 18 17 16 15 17 15 16
y 89 72 93 84 81 75 70 82 69 83

What is the 95% prediction interval for yx when x = 14?

Answer: From Example 19.8, we have

n = 10, β̂ = 4.067, α̂ = 9.761, σ̂ = 3.047 and Sxx = 376.

Thus the normal regression line is

yx = 9.761 + 4.067x.

Since x = 14, the corresponding predicted value yx is given by

yx = 9.761 + (4.067) (14) = 66.699.

Therefore

a = α̂+ β̂ x− t γ
2
(n− 2) σ̂

√
(n + 1) Sxx + n

(n− 2) Sxx

= 66.699− t0.025(8) (3.047)

√
(11) (376) + 10

(8) (376)

= 66.699− (2.306) (3.047) (1.1740)

= 58.4501.

Similarly

b = α̂+ β̂ x + t γ
2
(n− 2) σ̂

√
(n + 1) Sxx + n

(n− 2) Sxx

= 66.699 + t0.025(8) (3.047)

√
(11) (376) + 10

(8) (376)

= 66.699 + (2.306) (3.047) (1.1740)

= 74.9479.

Hence the 95% prediction interval for yx when x = 14 is [58.4501, 74.9479].

19.3. The Correlation Analysis

In the first two sections of this chapter, we examine the regression prob-
lem and have done an in-depth study of the least squares and the normal
regression analysis. In the regression analysis, we assumed that the values
of X are not random variables, but are fixed. However, the values of Yx for
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a given value of x are randomly distributed about E(Yx) = µx = α + βx.
Further, letting ε to be a random variable with E(ε) = 0 and V ar(ε) = σ2,
one can model the so called regression problem by

Yx = α+ β x + ε.

In this section, we examine the correlation problem. Unlike the regres-
sion problem, here both X and Y are random variables and the correlation
problem can be modeled by

E(Y ) = α+ β E(X).

From an experimental point of view this means that we are observing random
vector (X, Y ) drawn from some bivariate population.

Recall that if (X, Y ) is a bivariate random variable then the correlation
coefficient ρ is defined as

ρ =
E ((X − µX) (Y − µY ))√

E ((X − µX)2) E ((Y − µY )2)

where µX and µY are the mean of the random variables X and Y , respec-
tively.
Definition 19.1. If (X1, Y1), (X2, Y2), ..., (Xn, Yn) is a random sample from
a bivariate population, then the sample correlation coefficient is defined as

R =

n∑

i=1

(Xi −X) (Yi − Y )

√√√√
n∑

i=1

(Xi −X)2
√√√√

n∑

i=1

(Yi − Y )2
.

The corresponding quantity computed from data (x1, y1), (x2, y2), ..., (xn, yn)
will be denoted by r and it is an estimate of the correlation coefficient ρ.

Now we give a geometrical interpretation of the sample correlation coeffi-
cient based on a paired data set {(x1, y1), (x2, y2), ..., (xn, yn)}. We can asso-
ciate this data set with two vectors 7x = (x1, x2, ..., xn) and 7y = (y1, y2, ..., yn)
in IRn. Let L be the subset {λ7e |λ ∈ IR} of IRn, where 7e = (1, 1, ..., 1) ∈ IRn.
Consider the linear space V given by IRn modulo L, that is V = IRn/L. The
linear space V is illustrated in a figure on next page when n = 2.
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We denote the equivalence class associated with the vector 7x by [7x]. In
the linear space V it can be shown that the points (x1, y1), (x2, y2), ..., (xn, yn)
are collinear if and only if the the vectors [7x] and [7y] in V are proportional.

We define an inner product on this linear space V by

〈[7x], [7y]〉 =
n∑

i=1

(xi − x) (yi − y).

Then the angle θ between the vectors [7x] and [7y] is given by

cos(θ) =
〈[7x], [7y]〉√

〈[7x], [7x]〉
√
〈[7y], [7y]〉

which is

cos(θ) =

n∑

i=1

(xi − x) (yi − y)

√√√√
n∑

i=1

(xi − x)2
√√√√

n∑

i=1

(yi − y)2
= r.

Thus the sample correlation coefficient r can be interpreted geometrically as
the cosine of the angle between the vectors [7x] and [7y]. From this view point
the following theorem is obvious.
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Theorem 19.7. The sample correlation coefficient r satisfies the inequality

−1 ≤ r ≤ 1.

The sample correlation coefficient r = ±1 if and only if the set of points
{(x1, y1), (x2, y2), ..., (xn, yn)} for n ≥ 3 are collinear.

To do some statistical analysis, we assume that the paired data is a
random sample of size n from a bivariate normal population (X, Y ) ∼
BV N(µ1, µ2, σ2

1 , σ2
2 , ρ). Then the conditional distribution of the random

variable Y given X = x is normal, that is

Y |x ∼ N

(
µ2 + ρ

σ2
σ1

(x− µ1), σ2
2(1− ρ2)

)
.

This can be viewed as a normal regression model E(Y |x) = α + β x where
α = µ− ρσ2

σ1
µ1, β = ρσ2

σ1
, and V ar(Y |x) = σ2

2(1− ρ2).

Since β = ρσ2
σ1

, if ρ = 0, then β = 0. Hence the null hypothesis Ho : ρ = 0
is equivalent to Ho : β = 0. In the previous section, we devised a hypothesis
test for testing Ho : β = βo against Ha : β += βo. This hypothesis test, at
significance level γ, is “Reject Ho : β = βo if |t| ≥ t γ

2
(n− 2)”, where

t =
β̂ − β
σ̂

√
(n− 2) Sxx

n
.

If β = 0, then we have

t =
β̂

σ̂

√
(n− 2) Sxx

n
. (10)

Now we express t in term of the sample correlation coefficient r. Recall that

β̂ =
Sxy

Sxx
, (11)

σ̂2 =
1
n

[
Syy −

Sxy

Sxx
Sxy

]
, (12)

and

r =
Sxy√

Sxx Syy
. (13)
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Now using (11), (12), and (13), we compute

t =
β̂

σ̂

√
(n− 2) Sxx

n

=
Sxy

Sxx

√
n√[

Syy − Sxy

Sxx
Sxy

]

√
(n− 2) Sxx

n

=
Sxy√

Sxx Syy

1√[
1− Sxy

Sxx

Sxy

Syy

]
√

n− 2

=
√

n− 2
r√

1− r2
.

Hence to test the null hypothesis Ho : ρ = 0 against Ha : ρ += 0, at
significance level γ, is “Reject Ho : ρ = 0 if |t| ≥ t γ

2
(n − 2)”, where t =√

n− 2 r
1−r2 .

This above test does not extend to test other values of ρ except ρ = 0.
However, tests for the nonzero values of ρ can be achieved by the following
result.

Theorem 19.8. Let (X1, Y1), (X2, Y2), ..., (Xn, Yn) be a random sample from
a bivariate normal population (X, Y ) ∼ BV N(µ1, µ2, σ2

1 , σ2
2 , ρ). If

V =
1
2

ln
(

1 + R

1−R

)
and m =

1
2

ln
(

1 + ρ
1− ρ

)
,

then
Z =

√
n− 3 (V −m) → N(0, 1) as n →∞.

This theorem says that the statistic V is approximately normal with
mean m and variance 1

n−3 when n is large. This statistic can be used to
devise a hypothesis test for the nonzero values of ρ. Hence to test the null
hypothesis Ho : ρ = ρo against Ha : ρ += ρo, at significance level γ, is “Reject
Ho : ρ = ρo if |z| ≥ z γ

2
”, where z =

√
n− 3 (V −mo) and mo = 1

2 ln
(

1+ρo

1−ρo

)
.

Example 19.11. The following data were obtained in a study of the rela-
tionship between the weight and chest size of infants at birth:

x, weight in kg 2.76 2.17 5.53 4.31 2.30 3.70
y, chest size in cm 29.5 26.3 36.6 27.8 28.3 28.6
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Determine the sample correlation coefficient r and then test the null hypoth-
esis Ho : ρ = 0 against the alternative hypothesis Ha : ρ += 0 at a significance
level 0.01.

Answer: From the above data we find that

x = 3.46 and y = 29.51.

Next, we compute Sxx, Syy and Sxy using a tabular representation.

x− x y − y (x− x)(y − y) (x− x)2 (y − y)2

−0.70 −0.01 0.007 0.490 0.000
−1.29 −3.21 4.141 1.664 10.304

2.07 7.09 14.676 4.285 50.268
0.85 −1.71 −1.453 0.722 2.924
−1.16 −1.21 1.404 1.346 1.464

0.24 −0.91 −0.218 0.058 0.828
Sxy = 18.557 Sxx = 8.565 Syy = 65.788

Hence, the correlation coefficient r is given by

r =
Sxy√

Sxx Syy
=

18.557√
(8.565) (65.788)

= 0.782.

The computed t value is give by

t =
√

n− 2
r√

1− r2
=
√

(6− 2)
0.782√

1− (0.782)2
= 2.509.

From the t-table we have t0.005(4) = 4.604. Since

2.509 = |t| +≥ t0.005(4) = 4.604

we do not reject the null hypothesis Ho : ρ = 0.

19.4. Review Exercises

1. Let Y1, Y2, ..., Yn be n independent random variables such that each
Yi ∼ N(βxi, σ2), where both β and σ2 are unknown parameters. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, then find the maximum likelihood esti-
mators of β̂ and σ̂2 of β and σ2.
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2. Let Y1, Y2, ..., Yn be n independent random variables such that each
Yi ∼ N(βxi, σ2), where both β and σ2 are unknown parameters. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, then show that the maximum likelihood
estimator of β̂ is normally distributed. What are the mean and variance of
β̂?

3. Let Y1, Y2, ..., Yn be n independent random variables such that each
Yi ∼ N(βxi, σ2), where both β and σ2 are unknown parameters. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, then find an unbiased estimator σ̂2 of
σ2 and then find a constant k such that k σ̂2 ∼ χ2(2n).

4. Let Y1, Y2, ..., Yn be n independent random variables such that each
Yi ∼ N(βxi, σ2), where both β and σ2 are unknown parameters. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, then find a pivotal quantity for β and
using this pivotal quantity construct a (1−γ)100% confidence interval for β.

5. Let Y1, Y2, ..., Yn be n independent random variables such that each
Yi ∼ N(βxi, σ2), where both β and σ2 are unknown parameters. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, then find a pivotal quantity for σ2 and
using this pivotal quantity construct a (1 − γ)100% confidence interval for
σ2.

6. Let Y1, Y2, ..., Yn be n independent random variables such that
each Yi ∼ EXP (βxi), where β is an unknown parameter. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, then find the maximum likelihood esti-
mator of β̂ of β.

7. Let Y1, Y2, ..., Yn be n independent random variables such that
each Yi ∼ EXP (βxi), where β is an unknown parameter. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, then find the least squares estimator of
β̂ of β.

8. Let Y1, Y2, ..., Yn be n independent random variables such that
each Yi ∼ POI(βxi), where β is an unknown parameter. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
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served values based on x1, x2, ..., xn, then find the maximum likelihood esti-
mator of β̂ of β.

9. Let Y1, Y2, ..., Yn be n independent random variables such that
each Yi ∼ POI(βxi), where β is an unknown parameter. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, then find the least squares estimator of
β̂ of β.

10. Let Y1, Y2, ..., Yn be n independent random variables such that
each Yi ∼ POI(βxi), where β is an unknown parameter. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, show that the least squares estimator
and the maximum likelihood estimator of β are both unbiased estimator of
β.

11. Let Y1, Y2, ..., Yn be n independent random variables such that
each Yi ∼ POI(βxi), where β is an unknown parameter. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, the find the variances of both the least
squares estimator and the maximum likelihood estimator of β.

12. Given the five pairs of points (x, y) shown below:

x 10 20 30 40 50
y 50.071 0.078 0.112 0.120 0.131

What is the curve of the form y = a + bx + cx2 best fits the data by method
of least squares?

13. Given the five pairs of points (x, y) shown below:

x 4 7 9 10 11
y 10 16 22 20 25

What is the curve of the form y = a + b x best fits the data by method of
least squares?

14. The following data were obtained from the grades of six students selected
at random:

Mathematics Grade, x 72 94 82 74 65 85
English Grade, y 76 86 65 89 80 92
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Find the sample correlation coefficient r and then test the null hypothesis
Ho : ρ = 0 against the alternative hypothesis Ha : ρ += 0 at a significance
level 0.01.

15. Given a set of data {(x1, y2), (x2, y2), ..., (xn, yn)} what is the least square
estimate of α if y = α is fitted to this data set.

16. Given a set of data points {(2, 3), (4, 6), (5, 7)} what is the curve of the
form y = α+ β x2 best fits the data by method of least squares?

17. Given a data set {(1, 1), (2, 1), (2, 3), (3, 2), (4, 3)} and Yx ∼ N(α +
β x, σ2), find the point estimate of σ2 and then construct a 90% confidence
interval for σ.

18. For the data set {(1, 1), (2, 1), (2, 3), (3, 2), (4, 3)} determine the correla-
tion coefficient r. Test the null hypothesis H0 : ρ = 0 versus Ha : ρ += 0 at a
significance level 0.01.
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Chapter 20

ANALYSIS OF VARIANCE

In Chapter 19, we examine how a quantitative independent variable x

can be used for predicting the value of a quantitative dependent variable y. In
this chapter we would like to examine whether one or more independent (or
predictor) variable affects a dependent (or response) variable y. This chap-
ter differs from the last chapter because the independent variable may now
be either quantitative or qualitative. It also differs from the last chapter in
assuming that the response measurements were obtained for specific settings
of the independent variables. Selecting the settings of the independent vari-
ables is another aspect of experimental design. It enables us to tell whether
changes in the independent variables cause changes in the mean response
and it permits us to analyze the data using a method known as analysis of
variance (or ANOVA). Sir Ronald Aylmer Fisher (1890-1962) developed the
analysis of variance in 1920’s and used it to analyze data from agricultural
experiments.

The ANOVA investigates independent measurements from several treat-
ments or levels of one or more than one factors (that is, the predictor vari-
ables). The technique of ANOVA consists of partitioning the total sum of
squares into component sum of squares due to different factors and the error.
For instance, suppose there are Q factors. Then the total sum of squares
(SST) is partitioned as

SST = SSA + SSB + · · · + SSQ + SSError,

where SSA, SSB, ..., and SSQ represent the sum of squares associated with
the factors A, B, ..., and Q, respectively. If the ANOVA involves only one
factor, then it is called one-way analysis of variance. Similarly if it involves
two factors, then it is called the two-way analysis of variance. If it involves
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more then two factors, then the corresponding ANOVA is called the higher
order analysis of variance. In this chapter we only treat the one-way analysis
of variance.

The analysis of variance is a special case of the linear models that rep-
resent the relationship between a continuous response variable y and one or
more predictor variables (either continuous or categorical) in the form

y = X β + ε (1)

where y is an m × 1 vector of observations of response variable, X is the
m×n design matrix determined by the predictor variables, β is n× 1 vector
of parameters, and ε is an m × 1 vector of random error (or disturbances)
independent of each other and having distribution.

20.1. One-Way Analysis of Variance with Equal Sample Sizes

The standard model of one-way ANOVA is given by

Yij = µi + εij for i = 1, 2, ..., m, j = 1, 2, ..., n, (2)

where m ≥ 2 and n ≥ 2. In this model, we assume that each random variable

Yij ∼ N(µi, σ
2) for i = 1, 2, ..., m, j = 1, 2, ..., n. (3)

Note that because of (3), each εij in model (2) is normally distributed with
mean zero and variance σ2.

Given m independent samples, each of size n, where the members of the
ith sample, Yi1, Yi2, ..., Yin, are normal random variables with mean µi and
unknown variance σ2. That is,

Yij ∼ N
(
µi, σ

2
)
, i = 1, 2, ..., m, j = 1, 2, ..., n.

We will be interested in testing the null hypothesis

Ho : µ1 = µ2 = · · · = µm = µ

against the alternative hypothesis

Ha : not all the means are equal.
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In the following theorem we present the maximum likelihood estimators
of the parameters µ1, µ2, ..., µm and σ2.

Theorem 20.1. Suppose the one-way ANOVA model is given by the equa-
tion (2) where the εij ’s are independent and normally distributed random
variables with mean zero and variance σ2 for i = 1, 2, ..., m and j = 1, 2, ..., n.
Then the MLE’s of the parameters µi (i = 1, 2, ..., m) and σ2 of the model
are given by

µ̂i = Y i• i = 1, 2, ..., m,

σ̂2 =
1

nm
SSW,

where Y i• = 1
n

n∑

j=1

Yij and SSW =
m∑

i=1

n∑

j=1

(
Yij − Y i•

)2 is the within samples

sum of squares.

Proof: The likelihood function is given by

L(µ1, µ2, ..., µm, σ2) =
m∏

i=1

n∏

j=1

{
1√

2πσ2
e−

(Yij−µi)
2

2σ2

}

=
(

1√
2πσ2

)nm

e

− 1
2σ2

m∑

i=1

n∑

j=1

(Yij − µi)2

.

Taking the natural logarithm of the likelihood function L, we obtain

lnL(µ1, µ2, ..., µm, σ2) = −nm

2
ln(2π σ2)− 1

2σ2

m∑

i=1

n∑

j=1

(Yij − µi)2. (4)

Now taking the partial derivative of (4) with respect to µ1, µ2, ..., µm and
σ2, we get

∂lnL

∂µi
=

1
σ2

n∑

j=1

(Yij − µi) (5)

and
∂lnL

∂σ2
= −nm

2σ2
+

1
2σ4

m∑

i=1

n∑

j=1

(Yij − µi)2. (6)

Equating these partial derivatives to zero and solving for µi and σ2, respec-
tively, we have

µi = Y i• i = 1, 2, ..., m,

σ2 =
1

nm

m∑

i=1

n∑

j=1

(
Yij − Y i•

)2
,
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where

Y i• =
1
n

n∑

j=1

Yij .

It can be checked that these solutions yield the maximum of the likelihood
function and we leave this verification to the reader. Thus the maximum
likelihood estimators of the model parameters are given by

µ̂i = Y i• i = 1, 2, ..., m,

σ̂2 =
1

nm
SSW,

where SSW =
n∑

i=1

n∑

j=1

(
Yij − Y i•

)2. The proof of the theorem is now complete.

Define

Y •• =
1

nm

m∑

i=1

n∑

j=1

Yij . (7)

Further, define

SST =
m∑

i=1

n∑

j=1

(
Yij − Y ••

)2 (8)

SSW =
m∑

i=1

n∑

j=1

(
Yij − Y i•

)2 (9)

and

SSB =
m∑

i=1

n∑

j=1

(
Y i• − Y ••

)2 (10)

Here SST is the total sum of square, SSW is the within sum of square, and
SSB is the between sum of square.

Next we consider the partitioning of the total sum of squares. The fol-
lowing lemma gives us such a partition.

Lemma 20.1. The total sum of squares is equal to the sum of within and
between sum of squares, that is

SST = SSW + SSB. (11)
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Proof: Rewriting (8) we have

SST =
m∑

i=1

n∑

j=1

(
Yij − Y ••

)2

=
m∑

i=1

n∑

j=1

[
(Yij − Y i•) + (Yi• − Y ••)

]2

=
m∑

i=1

n∑

j=1

(Yij − Y i•)2 +
m∑

i=1

n∑

j=1

(Y i• − Y ••)2

+ 2
m∑

i=1

n∑

j=1

(Yij − Y i•) (Y i• − Y ••)

= SSW + SSB + 2
m∑

i=1

n∑

j=1

(Yij − Y i•) (Y i• − Y ••).

The cross-product term vanishes, that is

m∑

i=1

n∑

j=1

(Yij − Y i•) (Y i• − Y ••) =
m∑

i=1

(Yi• − Y••)
n∑

j=1

(Yij − Y i•) = 0.

Hence we obtain the asserted result SST = SSW + SSB and the proof of the
lemma is complete.

The following theorem is a technical result and is needed for testing the
null hypothesis against the alternative hypothesis.

Theorem 20.2. Consider the ANOVA model

Yij = µi + εij i = 1, 2, ..., m, j = 1, 2, ..., n,

where Yij ∼ N
(
µi, σ2
)
. Then

(a) the random variable SSW
σ2 ∼ χ2 (m(n− 1)), and

(b) the statistics SSW and SSB are independent.

Further, if the null hypothesis Ho : µ1 = µ2 = · · · = µm = µ is true, then

(c) the random variable SSB
σ2 ∼ χ2(m− 1),

(d) the statistics SSB m(n−1)
SSW(m−1) ∼ F (m− 1, m(n− 1)), and

(e) the random variable SST
σ2 ∼ χ2(nm− 1).
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Proof: In Chapter 13, we have seen in Theorem 13.7 that if X1, X2, ..., Xn

are independent random variables each one having the distribution N(µ, σ2),

then their mean X and
n∑

i=1

(Xi −X)2 have the following properties:

(i) X and
n∑

i=1

(Xi −X)2 are independent, and

(ii) 1
σ2

n∑

i=1

(Xi −X)2 ∼ χ2(n− 1).

Now using (i) and (ii), we establish this theorem.

(a) Using (ii), we see that

1
σ2

n∑

j=1

(
Yij − Y i•

)2 ∼ χ2(n− 1)

for each i = 1, 2, ..., m. Since

n∑

j=1

(
Yij − Y i•

)2 and
n∑

j=1

(
Yi′j − Y i′•

)2

are independent for i′ += i, we obtain

m∑

i=1

1
σ2

n∑

j=1

(
Yij − Y i•

)2 ∼ χ2(m(n− 1)).

Hence
SSW

σ2
=

1
σ2

m∑

i=1

n∑

j=1

(
Yij − Y i•

)2

=
m∑

i=1

1
σ2

n∑

j=1

(
Yij − Y i•

)2 ∼ χ2(m(n− 1)).

(b) Since for each i = 1, 2, ..., m, the random variables Yi1, Yi2, ..., Yin are
independent and

Yi1, Yi2, ..., Yin ∼ N
(
µi, σ

2
)

we conclude by (i) that

n∑

j=1

(
Yij − Y i•

)2 and Y i•
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are independent. Further

n∑

j=1

(
Yij − Y i•

)2 and Y i′•

are independent for i′ += i. Therefore, each of the statistics

n∑

j=1

(
Yij − Y i•

)2
i = 1, 2, ..., m

is independent of the statistics Y 1•, Y 2•, ..., Y m•, and the statistics

n∑

j=1

(
Yij − Y i•

)2
i = 1, 2, ..., m

are independent. Thus it follows that the sets

n∑

j=1

(
Yij − Y i•

)2
i = 1, 2, ..., m and Y i• i = 1, 2, ..., m

are independent. Thus

m∑

i=1

n∑

j=1

(
Yij − Y i•

)2 and
m∑

i=1

n∑

j=1

(
Y i• − Y ••

)2

are independent. Hence by definition, the statistics SSW and SSB are
independent.

Suppose the null hypothesis Ho : µ1 = µ2 = · · · = µm = µ is true.

(c) Under Ho, the random variables Y 1•, Y 2•, ..., Y m• are independent and
identically distributed with N

(
µ, σ

2

n

)
. Therefore by (ii)

n

σ2

m∑

i=1

(
Y i• − Y ••

)2 ∼ χ2(m− 1).

Hence
SSB

σ2
=

1
σ2

m∑

i=1

n∑

j=1

(
Y i• − Y ••

)2

=
n

σ2

m∑

i=1

(
Y i• − Y ••

)2 ∼ χ2(m− 1).
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(d) Since
SSW

σ2
∼ χ2 (m(n− 1))

and
SSB

σ2
∼ χ2(m− 1)

therefore
SSB

(m−1)σ2

SSW
(n(m−1)σ2

∼ F (m− 1, m(n− 1)).

That is
SSB

(m−1)

SSW
(n(m−1)

∼ F (m− 1, m(n− 1)).

(e) Under Ho, the random variables Yij , i = 1, 2, ..., m, j = 1, 2, ..., n are
independent and each has the distribution N(µ, σ2). By (ii) we see that

1
σ2

m∑

i=1

n∑

j=1

(
Yij − Y ••

)2 ∼ χ2(nm− 1).

Hence we have
SST

σ2
∼ χ2(nm− 1)

and the proof of the theorem is now complete.

From Theorem 20.1, we see that the maximum likelihood estimator of each
µi (i = 1, 2, ..., m) is given by

µ̂i = Y i•,

and since Y i• ∼ N
(
µi,

σ2

n

)
,

E (µ̂i) = E
(
Y i•
)

= µi.

Thus the maximum likelihood estimators are unbiased estimator of µi for
i = 1, 2, ..., m.

Since
σ̂2 =

SSW

mn

and by Theorem 20.2, 1
σ2 SSW ∼ χ2(m(n− 1)), we have

E
(
σ̂2
)

= E

(
SSW

mn

)
=

1
mn
σ2 E

(
1
σ2

SSW

)
=

1
mn
σ2 m(n− 1) += σ2.
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Thus the maximum likelihood estimator σ̂2 of σ2 is biased. However, the
estimator SSW

m(n−1) is an unbiased estimator. Similarly, the estimator SST
mn−1 is

an unbiased estimator where as SST
mn is a biased estimator of σ2.

Theorem 20.3. Suppose the one-way ANOVA model is given by the equa-
tion (2) where the εij ’s are independent and normally distributed random
variables with mean zero and variance σ2 for i = 1, 2, ..., m and j = 1, 2, ..., n.
The null hypothesis Ho : µ1 = µ2 = · · · = µm = µ is rejected whenever the
test statistics F satisfies

F =
SSB/(m− 1)

SSW/(m(n− 1))
> Fα(m− 1, m(n− 1)), (12)

where α is the significance level of the hypothesis test and Fα(m−1, m(n−1))
denotes the 100(1−α) percentile of the F -distribution with m−1 numerator
and nm−m denominator degrees of freedom.

Proof: Under the null hypothesis Ho : µ1 = µ2 = · · · = µm = µ, the
likelihood function takes the form

L(µ, σ2) =
m∏

i=1

n∏

j=1

{
1√

2πσ2
e−

(Yij−µ)2

2σ2

}

=
(

1√
2πσ2

)nm

e

− 1
2σ2

m∑

i=1

n∑

j=1

(Yij − µ)2

.

Taking the natural logarithm of the likelihood function and then maximizing
it, we obtain

µ̂ = Y •• and σ̂Ho =
1

mn
SST

as the maximum likelihood estimators of µ and σ2, respectively. Inserting
these estimators into the likelihood function, we have the maximum of the
likelihood function, that is

max L(µ, σ2) =



 1√
2πσ̂2

Ho




nm

e

− 1

2σ̂2
Ho

m∑

i=1

n∑

j=1

(Yij − Y ••)2

.

Simplifying the above expression, we see that

max L(µ, σ2) =



 1√
2πσ̂2

Ho




nm

e−
mn

2 SST
SST
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which is

max L(µ, σ2) =



 1√
2πσ̂2

Ho




nm

e−
mn
2 . (13)

When no restrictions imposed, we get the maximum of the likelihood function
from Theorem 20.1 as

max L(µ1, µ2, ..., µm, σ2) =

(
1√
2πσ̂2

)nm

e

− 1

2σ̂2

m∑

i=1

n∑

j=1

(Yij − Y i•)2

.

Simplifying the above expression, we see that

max L(µ1, µ2, ..., µm, σ2) =

(
1√
2πσ̂2

)nm

e−
mn

2 SSW
SSW

which is

max L(µ1, µ2, ..., µm, σ2) =

(
1√
2πσ̂2

)nm

e−
mn
2 . (14)

Next we find the likelihood ratio statistic W for testing the null hypoth-
esis Ho : µ1 = µ2 = · · · = µm = µ. Recall that the likelihood ratio statistic
W can be found by evaluating

W =
max L(µ, σ2)

max L(µ1, µ2, ..., µm, σ2)
.

Using (13) and (14), we see that

W =

(
σ̂2

σ̂2
Ho

)mn
2

. (15)

Hence the likelihood ratio test to reject the null hypothesis Ho is given by
the inequality

W < k0

where k0 is a constant. Using (15) and simplifying, we get

σ̂2
Ho

σ̂2
> k1
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where k1 =
(

1
k0

) 2
mn

. Hence

SST/mn

SSW/mn
=
σ̂2

Ho

σ̂2
> k1.

Using Lemma 20.1 we have

SSW + SSB

SSW
> k1.

Therefore
SSB

SSW
> k (16)

where k = k1−1. In order to find the cutoff point k in (16), we use Theorem
20.2 (d). Therefore

F =
SSB/(m− 1)

SSW/(m(n− 1))
>

m(n− 1)
m− 1

k

Since F has F distribution, we obtain

m(n− 1)
m− 1

k = Fα(m− 1, m(n− 1)).

Thus, at a significance level α, reject the null hypothesis Ho if

F =
SSB/(m− 1)

SSW/(m(n− 1))
> Fα(m− 1, m(n− 1))

and the proof of the theorem is complete.

The various quantities used in carrying out the test described in Theorem
20.3 are presented in a tabular form known as the ANOVA table.

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between SSB m− 1 MSB = SSB
m−1 F = MSB

MSW

Within SSW m(n− 1) MSW = SSW
m(n−1)

Total SST mn− 1

Table 20.1. One-Way ANOVA Table
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At a significance level α, the likelihood ratio test is: “Reject the null
hypothesis Ho : µ1 = µ2 = · · · = µm = µ if F > Fα(m− 1, m(n− 1)).” One
can also use the notion of p−value to perform this hypothesis test. If the
value of the test statistics is F = γ, then the p-value is defined as

p− value = P (F (m− 1, m(n− 1)) ≥ γ).

Alternatively, at a significance level α, the likelihood ratio test is: “Reject
the null hypothesis Ho : µ1 = µ2 = · · · = µm = µ if p− value < α.”

The following figure illustrates the notions of between sample variation
and within sample variation.

The ANOVA model described in (2), that is

Yij = µi + εij for i = 1, 2, ..., m, j = 1, 2, ..., n,

can be rewritten as

Yij = µ + αi + εij for i = 1, 2, ..., m, j = 1, 2, ..., n,

where µ is the mean of the m values of µi, and
m∑

i=1

αi = 0. The quantity αi is

called the effect of the ith treatment. Thus any observed value is the sum of
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an overall mean µ, a treatment or class deviation αi, and a random element
from a normally distributed random variable εij with mean zero and variance
σ2. This model is called model I, the fixed effects model. The effects of the
treatments or classes, measured by the parameters αi, are regarded as fixed
but unknown quantities to be estimated. In this fixed effect model the null
hypothesis H0 is now

Ho : α1 = α2 = · · · = αm = 0

and the alternative hypothesis is

Ha : not all the αi are zero.

The random effects model, also known as model II, is given by

Yij = µ + Ai + εij for i = 1, 2, ..., m, j = 1, 2, ..., n,

where µ is the overall mean and

Ai ∼ N(0, σ2
A) and εij ∼ N(0, σ2).

In this model, the variances σ2
A and σ2 are unknown quantities to be esti-

mated. The null hypothesis of the random effect model is Ho : σ2
A = 0 and

the alternative hypothesis is Ha : σ2
A > 0. In this chapter we do not consider

the random effect model.

Before we present some examples, we point out the assumptions on which
the ANOVA is based on. The ANOVA is based on the following three as-
sumptions:

(1) Independent Samples: The samples taken from the population under
consideration should be independent of one another.

(2) Normal Population: For each population, the variable under considera-
tion should be normally distributed.

(3) Equal Variance: The variances of the variables under consideration
should be the same for all the populations.

Example 20.1. The data in the following table gives the number of hours of
relief provided by 5 different brands of headache tablets administered to 25
subjects experiencing fevers of 38oC or more. Perform the analysis of variance
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and test the hypothesis at the 0.05 level of significance that the mean number
of hours of relief provided by the tablets is same for all 5 brands.

Tablets
A B C D F

5 9 3 2 7
4 7 5 3 6
8 8 2 4 9
6 6 3 1 4
3 9 7 4 7

Answer: Using the formulas (8), (9) and (10), we compute the sum of
squares SSW, SSB and SST as

SSW = 57.60, SSB = 79.94, and SST = 137.04.

The ANOVA table for this problem is shown below.

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between 79.94 4 19.86 6.90

Within 57.60 20 2.88

Total 137.04 24

At the significance level α = 0.05, we find the F-table that F0.05(4, 20) =
2.8661. Since

6.90 = F > F0.05(4, 20) = 2.8661

we reject the null hypothesis that the mean number of hours of relief provided
by the tablets is same for all 5 brands.

Note that using a statistical package like MINITAB, SAS or SPSS we
can compute the p-value to be

p− value = P (F (4, 20) ≥ 6.90) = 0.001.

Hence again we reach the same conclusion since p-value is less then the given
α for this problem.
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Example 20.2. Perform the analysis of variance and test the null hypothesis
at the 0.05 level of significance for the following two data sets.

Data Set 1 Data Set 2

Sample Sample
A B C A B C

8.1 8.0 14.8 9.2 9.5 9.4
4.2 15.1 5.3 9.1 9.5 9.3
14.7 4.7 11.1 9.2 9.5 9.3
9.9 10.4 7.9 9.2 9.6 9.3
12.1 9.0 9.3 9.3 9.5 9.2
6.2 9.8 7.4 9.2 9.4 9.3

Answer: Computing the sum of squares SSW, SSB and SST, we have the
following two ANOVA tables:

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between 0.3 2 0.1 0.01

Within 187.2 15 12.5

Total 187.5 17

and

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between 0.280 2 0.140 35.0

Within 0.600 15 0.004

Total 0.340 17
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At the significance level α = 0.05, we find from the F-table that F0.05(2, 15) =
3.68. For the first data set, since

0.01 = F < F0.05(2, 15) = 3.68

we do not reject the null hypothesis whereas for the second data set,

35.0 = F > F0.05(2, 15) = 3.68

we reject the null hypothesis.

Remark 20.1. Note that the sample means are same in both the data
sets. However, there is a less variation among the sample points in samples
of the second data set. The ANOVA finds a more significant differences
among the means in the second data set. This example suggests that the
larger the variation among sample means compared with the variation of
the measurements within samples, the greater is the evidence to indicate a
difference among population means.

20.2. One-Way Analysis of Variance with Unequal Sample Sizes

In the previous section, we examined the theory of ANOVA when sam-
ples are same sizes. When the samples are same sizes we say that the ANOVA
is in the balanced case. In this section we examine the theory of ANOVA
for unbalanced case, that is when the samples are of different sizes. In ex-
perimental work, one often encounters unbalance case due to the death of
experimental animals in a study or drop out of the human subjects from
a study or due to damage of experimental materials used in a study. Our
analysis of the last section for the equal sample size will be valid but have to
be modified to accommodate the different sample size.

Consider m independent samples of respective sizes n1, n2, ..., nm, where
the members of the ith sample, Yi1, Yi2, ..., Yini , are normal random variables
with mean µi and unknown variance σ2. That is,

Yij ∼ N
(
µi, σ

2
)
, i = 1, 2, ..., m, j = 1, 2, ..., ni.

Let us denote N = n1 +n2 + · · ·+nm. Again, we will be interested in testing
the null hypothesis

Ho : µ1 = µ2 = · · · = µm = µ
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against the alternative hypothesis

Ha : not all the means are equal.

Now we defining

Y i• =
1
ni

n∑

j=1

Yij , (17)

Y •• =
1
N

m∑

i=1

ni∑

j=1

Yij , (18)

SST =
m∑

i=1

ni∑

j=1

(
Yij − Y ••

)2
, (19)

SSW =
m∑

i=1

ni∑

j=1

(
Yij − Y i•

)2
, (20)

and

SSB =
m∑

i=1

ni∑

j=1

(
Y i• − Y ••

)2 (21)

we have the following results analogous to the results in the previous section.

Theorem 20.4. Suppose the one-way ANOVA model is given by the equa-
tion (2) where the εij ’s are independent and normally distributed random
variables with mean zero and variance σ2 for i = 1, 2, ..., m and j = 1, 2, ..., ni.
Then the MLE’s of the parameters µi (i = 1, 2, ..., m) and σ2 of the model
are given by

µ̂i = Y i• i = 1, 2, ..., m,

σ̂2 =
1
N

SSW,

where Y i• = 1
ni

ni∑

j=1

Yij and SSW =
m∑

i=1

ni∑

j=1

(
Yij − Y i•

)2 is the within samples

sum of squares.

Lemma 20.2. The total sum of squares is equal to the sum of within and
between sum of squares, that is SST = SSW + SSB.

Theorem 20.5. Consider the ANOVA model

Yij = µi + εij i = 1, 2, ..., m, j = 1, 2, ..., ni,
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where Yij ∼ N
(
µi, σ2
)
. Then

(a) the random variable SSW
σ2 ∼ χ2 (N −m), and

(b) the statistics SSW and SSB are independent.

Further, if the null hypothesis Ho : µ1 = µ2 = · · · = µm = µ is true, then

(c) the random variable SSB
σ2 ∼ χ2(m− 1),

(d) the statistics SSB m(n−1)
SSW(m−1) ∼ F (m− 1, N −m), and

(e) the random variable SST
σ2 ∼ χ2(N − 1).

Theorem 20.6. Suppose the one-way ANOVA model is given by the equa-
tion (2) where the εij ’s are independent and normally distributed random
variables with mean zero and variance σ2 for i = 1, 2, ..., m and j = 1, 2, ..., ni.
The null hypothesis Ho : µ1 = µ2 = · · · = µm = µ is rejected whenever the
test statistics F satisfies

F =
SSB/(m− 1)

SSW/(N −m)
> Fα(m− 1, N −m),

where α is the significance level of the hypothesis test and Fα(m−1, N −m)
denotes the 100(1−α) percentile of the F -distribution with m−1 numerator
and N −m denominator degrees of freedom.

The corresponding ANOVA table for this case is

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between SSB m− 1 MSB = SSB
m−1 F = MSB

MSW

Within SSW N −m MSW = SSW
N−m

Total SST N − 1

Table 20.2. One-Way ANOVA Table with unequal sample size

Example 20.3. Three sections of elementary statistics were taught by dif-
ferent instructors. A common final examination was given. The test scores
are given in the table below. Perform the analysis of variance and test the
hypothesis at the 0.05 level of significance that there is a difference in the
average grades given by the three instructors.
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Elementary Statistics
Instructor A Instructor B Instructor C

75 90 17
91 80 81
83 50 55
45 93 70
82 53 61
75 87 43
68 76 89
47 82 73
38 78 58

80 70
33
79

Answer: Using the formulas (17) - (21), we compute the sum of squares
SSW, SSB and SST as

SSW = 10362, SSB = 755, and SST = 11117.

The ANOVA table for this problem is shown below.

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between 755 2 377 1.02

Within 10362 28 370

Total 11117 30

At the significance level α = 0.05, we find the F-table that F0.05(2, 28) =
3.34. Since

1.02 = F < F0.05(2, 28) = 3.34

we accept the null hypothesis that there is no difference in the average grades
given by the three instructors.

Note that using a statistical package like MINITAB, SAS or SPSS we
can compute the p-value to be

p− value = P (F (2, 28) ≥ 1.02) = 0.374.
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Hence again we reach the same conclusion since p-value is less then the given
α for this problem.

We conclude this section pointing out the advantages of choosing equal
sample sizes (balance case) over the choice of unequal sample sizes (unbalance
case). The first advantage is that the F-statistics is insensitive to slight
departures from the assumption of equal variances when the sample sizes are
equal. The second advantage is that the choice of equal sample size minimizes
the probability of committing a type II error.

20.3. Pair wise Comparisons

When the null hypothesis is rejected using the F -test in ANOVA, one
may still wants to know where the difference among the means is. There are
several methods to find out where the significant differences in the means
lie after the ANOVA procedure is performed. Among the most commonly
used tests are Scheffé test and Tuckey test. In this section, we give a brief
description of these tests.

In order to perform the Scheffé test, we have to compare the means two
at a time using all possible combinations of means. Since we have m means,
we need

(m
2

)
pair wise comparisons. A pair wise comparison can be viewed as

a test of the null hypothesis H0 : µi = µk against the alternative Ha : µi += µk

for all i += k.

To conduct this test we compute the statistics

Fs =
(
Y i• − Y k•

)2

MSW

(
1
ni

+ 1
nk

) ,

where Y i• and Y k• are the means of the samples being compared, ni and
nk are the respective sample sizes, and MSW is the mean sum of squared of
within group. We reject the null hypothesis at a significance level of α if

Fs > (m− 1)Fα(m− 1, N −m)

where N = n1 + n2 + · · · + nm.

Example 20.4. Perform the analysis of variance and test the null hypothesis
at the 0.05 level of significance for the following data given in the table below.
Further perform a Scheffé test to determine where the significant differences
in the means lie.
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Sample
1 2 3

9.2 9.5 9.4
9.1 9.5 9.3
9.2 9.5 9.3
9.2 9.6 9.3
9.3 9.5 9.2
9.2 9.4 9.3

Answer: The ANOVA table for this data is given by

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between 0.280 2 0.140 35.0

Within 0.600 15 0.004

Total 0.340 17

At the significance level α = 0.05, we find the F-table that F0.05(2, 15) =
3.68. Since

35.0 = F > F0.05(2, 15) = 3.68

we reject the null hypothesis. Now we perform the Scheffé test to determine
where the significant differences in the means lie. From given data, we obtain
Y 1• = 9.2, Y 2• = 9.5 and Y 3• = 9.3. Since m = 3, we have to make 3 pair
wise comparisons, namely µ1 with µ2, µ1 with µ3, and µ2 with µ3. First we
consider the comparison of µ1 with µ2. For this case, we find

Fs =
(
Y 1• − Y 2•

)2

MSW

(
1

n1
+ 1

n2

) =
(9.2− 9.5)2

0.004
(

1
6 + 1

6

) = 67.5.

Since
67.5 = Fs > 2 F0.05(2, 15) = 7.36

we reject the null hypothesis H0 : µ1 = µ2 in favor of the alternative Ha :
µ1 += µ2.
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Next we consider the comparison of µ1 with µ3. For this case, we find

Fs =
(
Y 1• − Y 3•

)2

MSW

(
1

n1
+ 1

n3

) =
(9.2− 9.3)2

0.004
(

1
6 + 1

6

) = 7.5.

Since
7.5 = Fs > 2 F0.05(2, 15) = 7.36

we reject the null hypothesis H0 : µ1 = µ3 in favor of the alternative Ha :
µ1 += µ3.

Finally we consider the comparison of µ2 with µ3. For this case, we find

Fs =
(
Y 2• − Y 3•

)2

MSW

(
1

n2
+ 1

n3

) =
(9.5− 9.3)2

0.004
(

1
6 + 1

6

) = 30.0.

Since
30.0 = Fs > 2 F0.05(2, 15) = 7.36

we reject the null hypothesis H0 : µ2 = µ3 in favor of the alternative Ha :
µ2 += µ3.

Next consider the Tukey test. Tuckey test is applicable when we have a
balanced case, that is when the sample sizes are equal. For Tukey test we
compute the statistics

Q =
Y i• − Y k•√

MSW
n

,

where Y i• and Y k• are the means of the samples being compared, n is the
size of the samples, and MSW is the mean sum of squared of within group.
At a significance level α, we reject the null hypothesis H0 if

|Q| > Qα(m, ν)

where ν represents the degrees of freedom for the error mean square.

Example 20.5. For the data given in Example 20.4 perform a Tukey test
to determine where the significant differences in the means lie.

Answer: We have seen that Y 1• = 9.2, Y 2• = 9.5 and Y 3• = 9.3.

First we compare µ1 with µ2. For this we compute

Q =
Y 1• − Y 2•√

MSW
n

=
9.2− 9.3√

0.004
6

= −11.6189.
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Since
11.6189 = |Q| > Q0.05(2, 15) = 3.01

we reject the null hypothesis H0 : µ1 = µ2 in favor of the alternative Ha :
µ1 += µ2.

Next we compare µ1 with µ3. For this we compute

Q =
Y 1• − Y 3•√

MSW
n

=
9.2− 9.5√

0.004
6

= −3.8729.

Since
3.8729 = |Q| > Q0.05(2, 15) = 3.01

we reject the null hypothesis H0 : µ1 = µ3 in favor of the alternative Ha :
µ1 += µ3.

Finally we compare µ2 with µ3. For this we compute

Q =
Y 2• − Y 3•√

MSW
n

=
9.5− 9.3√

0.004
6

= 7.7459.

Since
7.7459 = |Q| > Q0.05(2, 15) = 3.01

we reject the null hypothesis H0 : µ2 = µ3 in favor of the alternative Ha :
µ2 += µ3.

Often in scientific and engineering problems, the experiment dictates
the need for comparing simultaneously each treatment with a control. Now
we describe a test developed by C. W. Dunnett for determining significant
differences between each treatment mean and the control. Suppose we wish
to test the m hypotheses

H0 : µ0 = µi versus Ha : µ0 += µi for i = 1, 2, ..., m,

where µ0 represents the mean yield for the population of measurements in
which the control is used. To test the null hypotheses specified by H0 against
two-sided alternatives for an experimental situation in which there are m

treatments, excluding the control, and n observation per treatment, we first
calculate

Di =
Y i• − Y 0•√

2 MSW
n

, i = 1, 2, ..., m.
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At a significance level α, we reject the null hypothesis H0 if

|Di| > Dα
2
(m, ν)

where ν represents the degrees of freedom for the error mean square. The
values of the quantity Dα

2
(m, ν) are tabulated for various α, m and ν.

Example 20.6. For the data given in the table below perform a Dunnett
test to determine any significant differences between each treatment mean
and the control.

Control Sample 1 Sample 2

9.2 9.5 9.4
9.1 9.5 9.3
9.2 9.5 9.3
9.2 9.6 9.3
9.3 9.5 9.2
9.2 9.4 9.3

Answer: The ANOVA table for this data is given by

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between 0.280 2 0.140 35.0

Within 0.600 15 0.004

Total 0.340 17

At the significance level α = 0.05, we find that D0.025(2, 15) = 2.44. Since

35.0 = D > D0.025(2, 15) = 2.44

we reject the null hypothesis. Now we perform the Dunnett test to determine
if there is any significant differences between each treatment mean and the
control. From given data, we obtain Y 0• = 9.2, Y 1• = 9.5 and Y 2• = 9.3.
Since m = 2, we have to make 2 pair wise comparisons, namely µ0 with µ1,
and µ0 with µ2. First we consider the comparison of µ0 with µ1. For this
case, we find

D1 =
Y 1• − Y 0•√

2 MSW
n

=
9.5− 9.2√

2 (0.004)
6

= 8.2158.
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Since

8.2158 = D1 > D0.025(2, 15) = 2.44

we reject the null hypothesis H0 : µ1 = µ0 in favor of the alternative Ha :
µ1 += µ0.

Next we find

D2 =
Y 2• − Y 0•√

2 MSW
n

=
9.3− 9.2√

2 (0.004)
6

= 2.7386.

Since

2.7386 = D2 > D0.025(2, 15) = 2.44

we reject the null hypothesis H0 : µ2 = µ0 in favor of the alternative Ha :
µ2 += µ0.

20.4. Tests for the Homogeneity of Variances

One of the assumptions behind the ANOVA is the equal variance, that is
the variances of the variables under consideration should be the same for all
population. Earlier we have pointed out that the F-statistics is insensitive
to slight departures from the assumption of equal variances when the sample
sizes are equal. Nevertheless it is advisable to run a preliminary test for
homogeneity of variances. Such a test would certainly be advisable in the
case of unequal sample sizes if there is a doubt concerning the homogeneity
of population variances.

Suppose we want to test the null hypothesis

H0 : σ2
1 = σ2

2 = · · ·σ2
m

versus the alternative hypothesis

Ha : not all variances are equal.

A frequently used test for the homogeneity of population variances is the
Bartlett test. Bartlett (1937) proposed a test for equal variances that was
modification of the normal-theory likelihood ratio test.

We will use this test to test the above null hypothesis H0 against Ha.
First, we compute the m sample variances S2

1 , S2
2 , ..., S2

m from the samples of
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size n1, n2, ..., nm, with n1 + n2 + · · · + nm = N . The test statistics Bc is
given by

Bc =

(N −m) lnS2
p −

m∑

i=1

(ni − 1) lnS2
i

1 + 1
3 (m−1)

(
m∑

i=1

1
ni − 1

− 1
N −m

)

where the pooled variance S2
p is given by

S2
p =

m∑

i=1

(ni − 1) S2
i

N −m
= MSW.

It is known that the sampling distribution of Bc is approximately chi-square
with m− 1 degrees of freedom, that is

Bc ∼ χ2(m− 1)

when (ni − 1) ≥ 3. Thus the Bartlett test rejects the null hypothesis H0 :
σ2

1 = σ2
2 = · · ·σ2

m at a significance level α if

Bc > χ2
1−α(m− 1),

where χ2
1−α(m− 1) denotes the upper (1−α)100 percentile of the chi-square

distribution with m− 1 degrees of freedom.

Example 20.7. For the following data perform an ANOVA and then apply
Bartlett test to examine if the homogeneity of variances condition is met for
a significance level 0.05.

Data
Sample 1 Sample 2 Sample 3 Sample 4

34 29 32 34
28 32 34 29
29 31 30 32
37 43 42 28
42 31 32 32
27 29 33 34
29 28 29 29
35 30 27 31
25 37 37 30
29 44 26 37
41 29 29 43
40 31 31 42
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Answer: The ANOVA table for this data is given by

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between 16.2 3 5.4 0.20

Within 1202.2 44 27.3

Total 1218.5 47

At the significance level α = 0.05, we find the F-table that F0.05(2, 44) =
3.23. Since

0.20 = F < F0.05(2, 44) = 3.23

we do not reject the null hypothesis.

Now we compute Bartlett test statistic Bc. From the data the variances
of each group can be found to be

S2
1 = 35.2836, S2

2 = 30.1401, S2
3 = 19.4481, S2

4 = 24.4036.

Further, the pooled variance is

S2
p = MSW = 27.3.

The statistics Bc is

Bc =

(N −m) lnS2
p −

m∑

i=1

(ni − 1) lnS2
i

1 + 1
3 (m−1)

(
m∑

i=1

1
ni − 1

− 1
N −m

)

=
44 ln 27.3− 11 [ ln 35.2836− ln 30.1401− ln 19.4481− ln 24.4036 ]

1 + 1
3 (4−1)

(
4

12−1 −
1

48−4

)

=
1.0537
1.0378

= 1.0153.

From chi-square table we find that χ2
0.95(3) = 7.815. Hence, since

1.0153 = Bc < χ2
0.95(3) = 7.815,
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we do not reject the null hypothesis that the variances are equal. Hence
Bartlett test suggests that the homogeneity of variances condition is met.

The Bartlett test assumes that the m samples should be taken from
m normal populations. Thus Bartlett test is sensitive to departures from
normality. The Levene test is an alternative to the Bartlett test that is less
sensitive to departures from normality. Levene (1960) proposed a test for the
homogeneity of population variances that considers the random variables

Wij =
(
Yij − Y i•

)2

and apply a one-way analysis of variance to these variables. If the F -test is
significant, the homogeneity of variances is rejected.

Levene (1960) also proposed using F -tests based on the variables

Wij = |Yij − Y i•|, Wij = ln |Yij − Y i•|, and Wij =
√
|Yij − Y i•|.

Brown and Forsythe (1974c) proposed using the transformed variables based
on the absolute deviations from the median, that is Wij = |Yij −Med(Yi•)|,
where Med(Yi•) denotes the median of group i. Again if the F -test is signif-
icant, the homogeneity of variances is rejected.

Example 20.8. For the data in Example 20.7 do a Levene test to examine
if the homogeneity of variances condition is met for a significance level 0.05.

Answer: From data we find that Y 1• = 33.00, Y 2• = 32.83, Y 3• = 31.83,
and Y 4• = 33.42. Next we compute Wij =

(
Yij − Y i•

)2. The resulting
values are given in the table below.

Transformed Data
Sample 1 Sample 2 Sample 3 Sample 4

1 14.7 0.0 0.3
25 0.7 4.7 19.5
16 3.4 3.4 2.0
16 103.4 103.4 29.3
81 3.4 0.0 2.0
36 14.7 1.4 0.3
16 23.4 8.0 19.5
4 8.0 23.4 5.8
64 17.4 26.7 11.7
16 124.7 34.0 12.8
64 14.7 0.0 91.8
49 3.4 0.7 73.7
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Now we perform an ANOVA to the data given in the table above. The
ANOVA table for this data is given by

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between 1430 3 477 0.46

Within 45491 44 1034

Total 46922 47

At the significance level α = 0.05, we find the F-table that F0.05(3, 44) =
2.84. Since

0.46 = F < F0.05(3, 44) = 2.84

we do not reject the null hypothesis that the variances are equal. Hence
Bartlett test suggests that the homogeneity of variances condition is met.

Although Bartlet test is most widely used test for homogeneity of vari-
ances a test due to Cochran provides a computationally simple procedure.
Cochran test is one of the best method for detecting cases where the variance
of one of the groups is much larger than that of the other groups. The test
statistics of Cochran test is give by

C =
max

1≤i≤m
S2

i

m∑

i=1

S2
i

.

The Cochran test rejects the null hypothesis H0 : σ2
1 = σ2

2 = · · ·σ2
m at a

significance level α if
C > Cα.

The critical values of Cα were originally published by Eisenhart et al (1947)
for some combinations of degrees of freedom ν and the number of groups m.
Here the degrees of freedom ν are

ν = max
1≤i≤m

(ni − 1).

Example 20.9. For the data in Example 20.7 perform a Cochran test to
examine if the homogeneity of variances condition is met for a significance
level 0.05.
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Answer: From the data the variances of each group can be found to be

S2
1 = 35.2836, S2

2 = 30.1401, S2
3 = 19.4481, S2

4 = 24.4036.

Hence the test statistic for Cochran test is

C =
35.2836

35.2836 + 30.1401 + 19.4481 + 24.4036
=

35.2836
109.2754

= 0.3328.

The critical value C0.5(3, 11) is given by 0.4884. Since

0.3328 = C < C0.5(3, 11) = 0.4884.

At a significance level α = 0.05, we do not reject the null hypothesis that
the variances are equal. Hence Cochran test suggests that the homogeneity
of variances condition is met.

20.5. Exercises

1. A consumer organization wants to compare the prices charged for a par-
ticular brand of refrigerator in three types of stores in Louisville: discount
stores, department stores and appliance stores. Random samples of 6 stores
of each type were selected. The results were shown below.

Discount Department Appliance

1200 1700 1600
1300 1500 1500
1100 1450 1300
1400 1300 1500
1250 1300 1700
1150 1500 1400

At the 0.05 level of significance, is there any evidence of a difference in the
average price between the types of stores?

2. It is conjectured that a certain gene might be linked to ovarian cancer.
The ovarian cancer is sub-classified into three categories: stage I, stage II and
stage III-IV. There are three random samples available; one from each stage.
The samples are labelled with three colors dyes and hybridized on a four
channel cDNA microarray (one channel remains unused). The experiment is
repeated 5 times and the following data were obtained.
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Microarray Data
Array mRNA 1 mRNA 2 mRNA 3

1 100 95 70
2 90 93 72
3 105 79 81
4 83 85 74
5 78 90 75

Is there any difference between the averages of the three mRNA samples at
0.05 significance level?

3. A stock market analyst thinks 4 stock of mutual funds generate about the
same return. He collected the accompaning rate-of-return data on 4 different
mutual funds during the last 7 years. The data is given in table below.

Mutual Funds
Year A B C D

2000 12 11 13 15
2001 12 17 19 11
2002 13 18 15 12
2004 18 20 25 11
2005 17 19 19 10
2006 18 12 17 10
2007 12 15 20 12

Do a one-way ANOVA to decide whether the funds give different performance
at 0.05 significance level.

4. Give a proof of the Theorem 20.4.

5. Give a proof of the Lemma 20.2.

6. Give a proof of the Theorem 20.5.

7. Give a proof of the Theorem 20.6.

8. An automobile company produces and sells its cars under 3 different brand
names. An autoanalyst wants to see whether different brand of cars have
same performance. He tested 20 cars from 3 different brands and recorded
the mileage per gallon.
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Brand 1 Brand 2 Brand 3

32 31 34
29 28 25
32 30 31
25 34 37
35 39 32
33 36
34 38
31

Do the data suggest a rejection of the null hypothesis at a significance level
0.05 that the mileage per gallon generated by three different brands are same.
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Chapter 21

GOODNESS OF FITS
TESTS

In point estimation, interval estimation or hypothesis test we always
started with a random sample X1, X2, ..., Xn of size n from a known dis-
tribution. In order to apply the theory to data analysis one has to know
the distribution of the sample. Quite often the experimenter (or data ana-
lyst) assumes the nature of the sample distribution based on his subjective
knowledge.

Goodness of fit tests are performed to validate experimenter opinion
about the distribution of the population from where the sample is drawn.
The most commonly known and most frequently used goodness of fit tests
are the Kolmogorov-Smirnov (KS) test and the Pearson chi-square (χ2) test.
There is a controversy over which test is the most powerful, but the gen-
eral feeling seems to be that the Kolmogorov-Smirnov test is probably more
powerful than the chi-square test in most situations. The KS test measures
the distance between distribution functions, while the χ2 test measures the
distance between density functions. Usually, if the population distribution
is continuous, then one uses the Kolmogorov-Smirnov where as if the pop-
ulation distribution is discrete, then one performs the Pearson’s chi-square
goodness of fit test.

21.1. Kolmogorov-Smirnov Test

Let X1, X2, ..., Xn be a random sample from a population X. We hy-
pothesized that the distribution of X is F (x). Further, we wish to test our
hypothesis. Thus our null hypothesis is

Ho : X ∼ F (x).
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We would like to design a test of this null hypothesis against the alternative
Ha : X +∼ F (x).

In order to design a test, first of all we need a statistic which will unbias-
edly estimate the unknown distribution F (x) of the population X using the
random sample X1, X2, ..., Xn. Let x(1) < x(2) < · · · < x(n) be the observed
values of the ordered statistics X(1), X(2), ..., X(n). The empirical distribution
of the random sample is defined as

Fn(x) =






0 if x < x(1),

k
n if x(k) ≤ x < x(k+1), for k = 1, 2, ..., n− 1,

1 if x(n) ≤ x.

The graph of the empirical distribution function F4(x) is shown below.

For a fixed value of x, the empirical distribution function can be considered
as a random variable that takes on the values

0,
1
n

,
2
n

, ...,
n− 1

n
,

n

n
.

First we show that Fn(x) is an unbiased estimator of the population distri-
bution F (x). That is,

E(Fn(x)) = F (x) (1)
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for a fixed value of x. To establish (1), we need the probability density
function of the random variable Fn(x). From the definition of the empirical
distribution we see that if exactly k observations are less than or equal to x,
then

Fn(x) =
k

n

which is

n Fn(x) = k.

The probability that an observation is less than or equal to x is given by
F (x).

Hence (see figure above)

P (n Fn(x) = k) = P

(
Fn(x) =

k

n

)

=
(

n

k

)
[F (x)]k [1− F (x)]n−k

for k = 0, 1, ..., n. Thus

n Fn(x) ∼ BIN(n, F (x)).
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Thus the expected value of the random variable n Fn(x) is given by

E(n Fn(x)) = n F (x)

n E(Fn(x)) = n F (x)

E(Fn(x)) = F (x).

This shows that, for a fixed x, Fn(x), on an average, equals to the population
distribution function F (x). Hence the empirical distribution function Fn(x)
is an unbiased estimator of F (x).

Since n Fn(x) ∼ BIN(n, F (x)), the variance of n Fn(x) is given by

V ar(n Fn(x)) = n F (x) [1− F (x)].

Hence the variance of Fn(x) is

V ar(Fn(x)) =
F (x) [1− F (x)]

n
.

It is easy to see that V ar(Fn(x)) → 0 as n → ∞ for all values of x. Thus
the empirical distribution function Fn(x) and F (x) tend to be closer to each
other with large n. As a matter of fact, Glivenkno, a Russian mathemati-
cian, proved that Fn(x) converges to F (x) uniformly in x as n → ∞ with
probability one.

Because of the convergence of the empirical distribution function to the
theoretical distribution function, it makes sense to construct a goodness of
fit test based on the closeness of Fn(x) and hypothesized distribution F (x).

Let
Dn = max

x∈ IR
|Fn(x)− F (x)|.

That is Dn is the maximum of all pointwise differences |Fn(x)− F (x)|. The
distribution of the Kolmogorov-Smirnov statistic, Dn can be derived. How-
ever, we shall not do that here as the derivation is quite involved. In stead,
we give a closed form formula for P (Dn ≤ d). If X1, X2, ..., Xn is a sample
from a population with continuous distribution function F (x), then

P (Dn ≤ d) =






0 if d ≤ 1
2 n

n!
n∏

i=1

∫ 2 i− 1
n +d

2 i−d
du if 1

2n < d < 1

1 if d ≥ 1



Probability and Mathematical Statistics 649

where du = du1du2 · · · dun with 0 < u1 < u2 < · · · < un < 1. Further,

lim
n→∞

P (
√

n Dn ≤ d) = 1− 2
∞∑

k=1

(−1)k−1e−2 k2 d2
.

These formulas show that the distribution of the Kolmogorov-Smirnov statis-
tic Dn is distribution free, that is, it does not depend on the distribution F

of the population.

For most situations, it is sufficient to use the following approximations
due to Kolmogorov:

P (
√

n Dn ≤ d) ≈ 1− 2e−2nd2
for d >

1√
n

.

If the null hypothesis Ho : X ∼ F (x) is true, the statistic Dn is small. It
is therefore reasonable to reject Ho if and only if the observed value of Dn

is larger than some constant dn. If the level of significance is given to be α,
then the constant dn can be found from

α = P (Dn > dn / Ho is true) ≈ 2e−2nd2
n .

This yields the following hypothesis test: Reject Ho if Dn ≥ dn where

dn =
√
− 1

2n
ln
(α

2

)

is obtained from the above Kolmogorov’s approximation. Note that the ap-
proximate value of d12 obtained by the above formula is equal to 0.3533 when
α = 0.1, however more accurate value of d12 is 0.34.

Next we address the issue of the computation of the statistics Dn. Let
us define

D+
n = max

x∈ IR
{Fn(x)− F (x)}

and
D−

n = max
x∈ IR

{F (x)− Fn(x)}.

Then it is easy to see that

Dn = max{D+
n , D−

N}.

Further, since Fn(x(i)) = i
n . it can be shown that

D+
n = max

{
max

1≤i≤n

[
i

n
− F (x(i))

]
, 0
}
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and
D−

n = max
{

max
1≤i≤n

[
F (x(i))−

i− 1
n

]
, 0
}

.

Therefore it can also be shown that

Dn = max
1≤i≤n

{
max
[

i

n
− F (x(i)), F (x(i))−

i− 1
n

]}
.

The following figure illustrates the Kolmogorov-Smirnov statistics Dn when
n = 4.

Example 21.1. The data on the heights of 12 infants are given be-
low: 18.2, 21.4, 22.6, 17.4, 17.6, 16.7, 17.1, 21.4, 20.1, 17.9, 16.8, 23.1. Test
the hypothesis that the data came from some normal population at a sig-
nificance level α = 0.1.

Answer: Here, the null hypothesis is

Ho : X ∼ N(µ, σ2).

First we estimate µ and σ2 from the data. Thus, we get

x =
230.3
12

= 19.2.
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and

s2 =
4482.01− 1

12 (230.3)2

12− 1
=

62.17
11

= 5.65.

Hence s = 2.38. Then by the null hypothesis

F (x(i)) = P

(
Z ≤

x(i) − 19.2
2.38

)

where Z ∼ N(0, 1) and i = 1, 2, ..., n. Next we compute the Kolmogorov-
Smirnov statistic Dn the given sample of size 12 using the following tabular
form.

i x(i) F (x(i)) i
12 − F (x(i)) F (x(i))− i−1

12

1 16.7 0.1469 −0.0636 0.1469
2 16.8 0.1562 0.0105 0.0729
3 17.1 0.1894 0.0606 0.0227
4 17.4 0.2236 0.1097 −0.0264
5 17.6 0.2514 0.1653 −0.0819
6 17.9 0.2912 0.2088 −0.1255
7 18.2 0.3372 0.2461 −0.1628
8 20.1 0.6480 0.0187 0.0647
9 21.4 0.8212 0.0121 0.0712

10 21.4
11 22.6 0.9236 −0.0069 0.0903
12 23.1 0.9495 0.0505 0.0328

Thus
D12 = 0.2461.

From the tabulated value, we see that d12 = 0.34 for significance level α =
0.1. Since D12 is smaller than d12 we accept the null hypothesis Ho : X ∼
N(µ, σ2). Hence the data came from a normal population.

Example 21.2. Let X1, X2, ..., X10 be a random sample from a distribution
whose probability density function is

f(x) =

{ 1 if 0 < x < 1

0 otherwise.

Based on the observed values 0.62, 0.36, 0.23, 0.76, 0.65, 0.09, 0.55, 0.26,

0.38, 0.24, test the hypothesis Ho : X ∼ UNIF (0, 1) against Ha : X +∼
UNIF (0, 1) at a significance level α = 0.1.
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Answer: The null hypothesis is Ho : X ∼ UNIF (0, 1). Thus

F (x) =

{ 0 if x < 0
x if 0 ≤ x < 1
1 if x ≥ 1.

Hence
F (x(i)) = x(i) for i = 1, 2, ..., n.

Next we compute the Kolmogorov-Smirnov statistic Dn the given sample of
size 10 using the following tabular form.

i x(i) F (x(i)) i
10 − F (x(i)) F (x(i))− i−1

10

1 0.09 0.09 0.01 0.09
2 0.23 0.23 −0.03 0.13
3 0.24 0.24 0.06 0.04
4 0.26 0.26 0.14 −0.04
5 0.36 0.36 0.14 −0.04
6 0.38 0.38 0.22 −0.12
7 0.55 0.55 0.15 −0.05
8 0.62 0.62 0.18 −0.08
9 0.65 0.65 0.25 −0.15

10 0.76 0.76 0.24 −0.14

Thus
D10 = 0.25.

From the tabulated value, we see that d10 = 0.37 for significance level α = 0.1.
Since D10 is smaller than d10 we accept the null hypothesis

Ho : X ∼ UNIF (0, 1).

21.2 Chi-square Test

The chi-square goodness of fit test was introduced by Karl Pearson in
1900. Recall that the Kolmogorov-Smirnov test is only for testing a specific
continuous distribution. Thus if we wish to test the null hypothesis

Ho : X ∼ BIN(n, p)

against the alternative Ha : X +∼ BIN(n, p), then we can not use the
Kolmogorov-Smirnov test. Pearson chi-square goodness of fit test can be
used for testing of null hypothesis involving discrete as well as continuous
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distribution. Unlike Kolmogorov-Smirnov test, the Pearson chi-square test
uses the density function the population X.

Let X1, X2, ..., Xn be a random sample from a population X with prob-
ability density function f(x). We wish to test the null hypothesis

Ho : X ∼ f(x)

against
Ha : X +∼ f(x).

If the probability density function f(x) is continuous, then we divide up the
abscissa of the probability density function f(x) and calculate the probability
pi for each of the interval by using

pi =
∫ xi

xi−1

f(x) dx,

where {x0, x1, ..., xn} is a partition of the domain of the f(x).

Let Y1, Y2, ..., Ym denote the number of observations (from the random sample
X1, X2, ..., Xn) is 1st, 2nd, 3rd, ..., mth interval, respectively.

Since the sample size is n, the number of observations expected to fall in
the ith interval is equal to npi. Then

Q =
m∑

i=1

(Yi − npi)2

npi
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measures the closeness of observed Yi to expected number npi. The distribu-
tion of Q is chi-square with m− 1 degrees of freedom. The derivation of this
fact is quite involved and beyond the scope of this introductory level book.

Although the distribution of Q for m > 2 is hard to derive, yet for m = 2
it not very difficult. Thus we give a derivation to convince the reader that Q

has χ2 distribution. Notice that Y1 ∼ BIN(n, p1). Hence for large n by the
central limit theorem, we have

Y1 − n p1√
n p1 (1− p1)

∼ N(0, 1).

Thus
(Y1 − n p1)2

n p1 (1− p1)
∼ χ2(1).

Since
(Y1 − n p1)2

n p1 (1− p1)
=

(Y1 − n p1)2

n p1
+

(Y1 − n p1)2

n (1− p1)
,

we have This implies that

(Y1 − n p1)2

n p1
+

(Y1 − n p1)2

n (1− p1)
∼ χ2(1)

which is
(Y1 − n p1)2

n p1
+

(n− Y2 − n + n p2)2

n p2
∼ χ2(1)

due to the facts that Y1 + Y2 = n and p1 + p2 = 1. Hence

2∑

i=1

(Yi − n pi)2

n pi
∼ χ2(1),

that is, the chi-square statistic Q has approximate chi-square distribution.

Now the simple null hypothesis

H0 : p1 = p10, p2 = p20, · · · pm = pm0

is to be tested against the composite alternative

Ha : at least one pi is not equal to pi0 for some i.

Here p10, p20, ..., pm0 are fixed probability values. If the null hypothesis is
true, then the statistic

Q =
m∑

i=1

(Yi − n pi0)2

n pi0
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has an approximate chi-square distribution with m − 1 degrees of freedom.
If the significance level α of the hypothesis test is given, then

α = P
(
Q ≥ χ2

1−α(m− 1)
)

and the test is “Reject Ho if Q ≥ χ2
1−α(m− 1).” Here χ2

1−α(m− 1) denotes
a real number such that the integral of the chi-square density function with
m−1 degrees of freedom from zero to this real number χ2

1−α(m−1) is 1−α.
Now we give several examples to illustrate the chi-square goodness-of-fit test.

Example 21.3. A die was rolled 30 times with the results shown below:

Number of spots 1 2 3 4 5 6
Frequency (xi) 1 4 9 9 2 5

If a chi-square goodness of fit test is used to test the hypothesis that the die
is fair at a significance level α = 0.05, then what is the value of the chi-square
statistic and decision reached?

Answer: In this problem, the null hypothesis is

Ho : p1 = p2 = · · · = p6 =
1
6
.

The alternative hypothesis is that not all pi’s are equal to 1
6 . The test will

be based on 30 trials, so n = 30. The test statistic

Q =
6∑

i=1

(xi − n pi)2

n pi
,

where p1 = p2 = · · · = p6 = 1
6 . Thus

n pi = (30)
1
6

= 5

and

Q =
6∑

i=1

(xi − n pi)2

n pi

=
6∑

i=1

(xi − 5)2

5

=
1
5

[16 + 1 + 16 + 16 + 9]

=
58
5

= 11.6.
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The tabulated χ2 value for χ2
0.95(5) is given by

χ2
0.95(5) = 11.07.

Since
11.6 = Q > χ2

0.95(5) = 11.07

the null hypothesis Ho : p1 = p2 = · · · = p6 = 1
6 should be rejected.

Example 21.4. It is hypothesized that an experiment results in outcomes
K, L, M and N with probabilities 1

5 , 3
10 , 1

10 and 2
5 , respectively. Forty

independent repetitions of the experiment have results as follows:

Outcome K L M N
Frequency 11 14 5 10

If a chi-square goodness of fit test is used to test the above hypothesis at the
significance level α = 0.01, then what is the value of the chi-square statistic
and the decision reached?

Answer: Here the null hypothesis to be tested is

Ho : p(K) =
1
5
, p(L) =

3
10

, p(M) =
1
10

, p(N) =
2
5
.

The test will be based on n = 40 trials. The test statistic

Q =
4∑

k=1

(xk − npk)2

n pk

=
(x1 − 8)2

8
+

(x2 − 12)2

12
+

(x3 − 4)2

4
+

(x4 − 16)2

16

=
(11− 8)2

8
+

(14− 12)2

12
+

(5− 4)2

4
+

(10− 16)2

16

=
9
8

+
4
12

+
1
4

+
36
16

=
95
24

= 3.958.

From chi-square table, we have

χ2
0.99(3) = 11.35.

Thus
3.958 = Q < χ2

0.99(3) = 11.35.
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Therefore we accept the null hypothesis.

Example 21.5. Test at the 10% significance level the hypothesis that the
following data

06.88 06.92 04.80 09.85 07.05 19.06 06.54 03.67 02.94 04.89
69.82 06.97 04.34 13.45 05.74 10.07 16.91 07.47 05.04 07.97
15.74 00.32 04.14 05.19 18.69 02.45 23.69 44.10 01.70 02.14
05.79 03.02 09.87 02.44 18.99 18.90 05.42 01.54 01.55 20.99
07.99 05.38 02.36 09.66 00.97 04.82 10.43 15.06 00.49 02.81

give the values of a random sample of size 50 from an exponential distribution
with probability density function

f(x; θ) =






1
θ e−

x
θ if 0 < x <∞

0 elsewhere,

where θ > 0.

Answer: From the data x = 9.74 and s = 11.71. Notice that

Ho : X ∼ EXP (θ).

Hence we have to partition the domain of the experimental distribution into
m parts. There is no rule to determine what should be the value of m. We
assume m = 10 (an arbitrary choice for the sake of convenience). We partition
the domain of the given probability density function into 10 mutually disjoint
sets of equal probability. This partition can be found as follow.

Note that x estimate θ. Thus

θ̂ = x = 9.74.

Now we compute the points x1, x2, ..., x10 which will be used to partition the
domain of f(x)

1
10

=
∫ x1

xo

1
θ

e−
x
θ

= −
[
e−

x
θ
]x1

0

= 1− e−
x1
θ .

Hence
x1 = θ ln

(
10
9

)

= 9.74 ln
(

10
9

)

= 1.026.
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Using the value of x1, we can find the value of x2. That is

1
10

=
∫ x2

x1

1
θ

e−
x
θ

= e−
x1
θ − e−

x2
θ .

Hence
x2 = −θ ln

(
e−

x1
θ − 1

10

)
.

In general

xk = −θ ln
(

e−
xk−1
θ − 1

10

)

for k = 1, 2, ..., 9, and x10 = ∞. Using these xk’s we find the intervals
Ak = [xk, xk+1) which are tabulates in the table below along with the number
of data points in each each interval.

Interval Ai Frequency (oi) Expected value (ei)
[0, 1.026) 3 5
[1.026, 2.173) 4 5
[2.173, 3.474) 6 5
[3.474, 4.975) 6 5
[4.975, 6.751) 7 5
[6.751, 8.925) 7 5
[8.925, 11.727) 5 5
[11.727, 15.676) 2 5
[15.676, 22.437) 7 5
[22.437, ∞) 3 5
Total 50 50

From this table, we compute the statistics

Q =
10∑

i=1

(oi − ei)2

ei
= 6.4.

and from the chi-square table, we obtain

χ2
0.9(9) = 14.68.

Since
6.4 = Q < χ2

0.9(9) = 14.68
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we accept the null hypothesis that the sample was taken from a population
with exponential distribution.

21.3. Review Exercises

1. The data on the heights of 4 infants are: 18.2, 21.4, 16.7 and 23.1. For
a significance level α = 0.1, use Kolmogorov-Smirnov Test to test the hy-
pothesis that the data came from some uniform population on the interval
(15, 25). (Use d4 = 0.56 at α = 0.1.)

2. A four-sided die was rolled 40 times with the following results

Number of spots 1 2 3 4
Frequency 5 9 10 16

If a chi-square goodness of fit test is used to test the hypothesis that the die
is fair at a significance level α = 0.05, then what is the value of the chi-square
statistic?

3. A coin is tossed 500 times and k heads are observed. If the chi-squares
distribution is used to test the hypothesis that the coin is unbiased, this
hypothesis will be accepted at 5 percents level of significance if and only if k

lies between what values? (Use χ2
0.05(1) = 3.84.)

4. It is hypothesized that an experiment results in outcomes A, C, T and G

with probabilities 1
16 , 5

16 , 1
8 and 3

8 , respectively. Eighty independent repeti-
tions of the experiment have results as follows:

Outcome A G C T
Frequency 3 28 15 34

If a chi-square goodness of fit test is used to test the above hypothesis at the
significance level α = 0.1, then what is the value of the chi-square statistic
and the decision reached?

5. A die was rolled 50 times with the results shown below:

Number of spots 1 2 3 4 5 6
Frequency (xi) 8 7 12 13 4 6

If a chi-square goodness of fit test is used to test the hypothesis that the die
is fair at a significance level α = 0.1, then what is the value of the chi-square
statistic and decision reached?
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6. Test at the 10% significance level the hypothesis that the following data

05.88 05.92 03.80 08.85 06.05 18.06 05.54 02.67 01.94 03.89
70.82 07.97 05.34 14.45 06.74 11.07 17.91 08.47 06.04 08.97
16.74 01.32 03.14 06.19 19.69 03.45 24.69 45.10 02.70 03.14
04.79 02.02 08.87 03.44 17.99 17.90 04.42 01.54 01.55 19.99
06.99 05.38 03.36 08.66 01.97 03.82 11.43 14.06 01.49 01.81

give the values of a random sample of size 50 from an exponential distribution
with probability density function

f(x; θ) =






1
θ e−

x
θ if 0 < x <∞

0 elsewhere,

where θ > 0.

7. Test at the 10% significance level the hypothesis that the following data

0.88 0.92 0.80 0.85 0.05 0.06 0.54 0.67 0.94 0.89
0.82 0.97 0.34 0.45 0.74 0.07 0.91 0.47 0.04 0.97
0.74 0.32 0.14 0.19 0.69 0.45 0.69 0.10 0.70 0.14
0.79 0.02 0.87 0.44 0.99 0.90 0.42 0.54 0.55 0.99
0.94 0.38 0.36 0.66 0.97 0.82 0.43 0.06 0.49 0.81

give the values of a random sample of size 50 from an exponential distribution
with probability density function

f(x; θ) =






(1 + θ) xθ if 0 ≤ x ≤ 1

0 elsewhere,

where θ > 0.

8. Test at the 10% significance level the hypothesis that the following data

06.88 06.92 04.80 09.85 07.05 19.06 06.54 03.67 02.94 04.89
29.82 06.97 04.34 13.45 05.74 10.07 16.91 07.47 05.04 07.97
15.74 00.32 04.14 05.19 18.69 02.45 23.69 24.10 01.70 02.14
05.79 03.02 09.87 02.44 18.99 18.90 05.42 01.54 01.55 20.99
07.99 05.38 02.36 09.66 00.97 04.82 10.43 15.06 00.49 02.81

give the values of a random sample of size 50 from an exponential distribution
with probability density function

f(x; θ) =

{ 1
θ if 0 ≤ x ≤ θ

0 elsewhere.
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9. Suppose that in 60 rolls of a die the outcomes 1, 2, 3, 4, 5, and 6 occur
with frequencies n1, n2, 14, 8, 10, and 8 respectively. What is the least value
of
∑2

i=1(ni−10)2 for which the chi-square test rejects the hypothesis that the
die is fair at 1% level of significance level? (Answer:

∑2
i=1(ni−10)2 ≥ 63.43.)

10. It is hypothesized that of all marathon runners 70% are adult men, 25%
are adult women, and 5% are youths. To test this hypothesis, the following
data from the a recent marathon are used:

Adult Men Adult Women Youths Total
630 300 70 1000

A chi-square goodness-of-fit test is used. What is the value of the statistics?
(Ans: 25)
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ANSWERES
TO

SELECTED
REVIEW EXERCISES

CHAPTER 1

1. 7
1912 .

2. 244.
3. 7488.
4. (a) 4

24 , (b) 6
24 and (c) 4

24 .
5. 0.95.
6. 4

7 .
7. 2

3 .
8. 7560.
10. 43.
11. 2.
12. 0.3238.
13. S has countable number of elements.
14. S has uncountable number of elements.
15. 25

648 .
16. (n− 1)(n− 2)

(
1
2

)n+1.
17. (5!)2.
18. 7

10 .
19. 1

3 .
20. n+1

3n−1 .
21. 6

11 .
22. 1

5 .
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CHAPTER 2

1. 1
3 .

2. (6!)2

(21)6 .
3. 0.941.
4. 4

5 .
5. 6

11 .
6. 255

256 .
7. 0.2929.
8. 10

17 .
9. 30

31 .
10. 7

24 .

11. ( 4
10 )( 3

6 )
( 4

10 ) ( 3
6 )+( 6

10 ) ( 2
5 )

.

12. (0.01) (0.9)
(0.01) (0.9)+(0.99) (0.1) .

13. 1
5 .

14. 2
9 .

15. (a)
(

2
5

) (
4
52

)
+
(

3
5

) (
4
16

)
and (b) ( 3

5 )( 4
16 )

( 2
5 ) ( 4

52 )+( 3
5 ) ( 4

16 )
.

16. 1
4 .

17. 3
8 .

18. 5.

19. 5
42 .

20. 1
4 .
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CHAPTER 3

1. 1
4 .

2. k+1
2k+1 .

3. 1
3√2

.

4. Mode of X = 0 and median of X = 0.

5. θ ln
(

10
9

)
.

6. 2 ln 2.

7. 0.25.

8. f(2) = 0.5, f(3) = 0.2, f(π) = 0.3.

9. f(x) = 1
6x3e−x.

10. 3
4 .

11. a = 500, mode = 0.2, and P (X ≥ 0.2) = 0.6766.

12. 0.5.

13. 0.5.

14. 1− F (−y).

15. 1
4 .

16. RX = {3, 4, 5, 6, 7, 8, 9};
f(3) = f(4) = 2

20 , f(5) = f(6) = f(7) = 4
20 , f(8) = f(9) = 2

20 .

17. RX = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
f(2) = 1

36 , f(3) = 2
36 , f(4) = 3

36 , f(5) = 4
36 , f(6) = 5

36 , f(7) = 6
36 , f(8) =

5
36 , f(9) = 4

36 , f(10) = 3
36 , f(11) = 2

36 , f(12) = 1
36 .

18. RX = {0, 1, 2, 3, 4, 5};
f(0) = 59049

105 , f(1) = 32805
105 , f(2) = 7290

105 , f(3) = 810
105 , f(4) = 45

105 , f(5) = 1
105 .

19. RX = {1, 2, 3, 4, 5, 6, 7};
f(1) = 0.4, f(2) = 0.2666, f(3) = 0.1666, f(4) = 0.0952, f(5) =

0.0476, f(6) = 0.0190, f(7) = 0.0048.

20. c = 1 and P (X = even) = 1
4 .

21. c = 1
2 , P (1 ≤ X ≤ 2) = 3

4 .

22. c = 3
2 and P

(
X ≤ 1

2

)
= 3

16 .
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CHAPTER 4

1. −0.995.
2. (a) 1

33 , (b) 12
33 , (c) 65

33 .
3. (c) 0.25, (d) 0.75, (e) 0.75, (f) 0.
4. (a) 3.75, (b) 2.6875, (c) 10.5, (d) 10.75, (e) −71.5.
5. (a) 0.5, (b) π, (c) 3

10 π.
6. 17

24
1√
θ
.

7. 4
√

1
E(x2) .

8. 8
3 .

9. 280.
10. 9

20 .
11. 5.25.
12. a = 4h3

√
π

, E(X) = 2
h
√
π
, V ar(X) = 1

h2

[
3
2 −

4
π

]
.

13. E(X) = 7
4 , E(Y ) = 7

8 .
14. − 2

38 .
15. −38.
16. M(t) = 1 + 2t + 6t2 + · · ·.
17. 1

4 .
18. βn

∏n−1
i=1 (k + i).

19. 1
4

[
3e2t + e3t

]
.

20. 120.
21. E(X) = 3, V ar(X) = 2.
22. 11.
23. c = E(X).
24. F (c) = 0.5.
25. E(X) = 0, V ar(X) = 2.
26. 1

625 .
27. 38.
28. a = 5 and b = −34 or a = −5 and b = 36.
29. −0.25.
30. 10.
31. − 1

1−p p ln p.
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CHAPTER 5

1. 5
16 .

2. 5
16 .

3. 25
72 .

4. 4375
279936 .

5. 3
8 .

6. 11
16 .

7. 0.008304.

8. 3
8 .

9. 1
4 .

10. 0.671.

11. 1
16 .

12. 0.0000399994.

13. n2−3n+2
2n+1 .

14. 0.2668.

15. ( 6
3−k) (4

k)
(10

3 ) , 0 ≤ k ≤ 3.

16. 0.4019.

17. 1− 1
e2 .

18.
(x−1

2

) (
1
6

)3 ( 5
6

)x−3.

19. 5
16 .

20. 0.22345.

21. 1.43.

22. 24.

23. 26.25.

24. 2.

25. 0.3005.

26. 4
e4−1 .

27. 0.9130.

28. 0.1239.
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CHAPTER 6

1. f(x) = e−x 0 < x <∞.
2. Y ∼ UNIF (0, 1).
3. f(w) = 1

w
√

2πσ2 e−
1
2 ( ln w−µ

σ )2

.
4. 0.2313.
5. 3 ln 4.
6. 20.1σ.
7. 3

4 .
8. 2.0.
9. 53.04.
10. 44.5314.
11. 75.
12. 0.4649.
13. n!

θn .
14. 0.8664.
15. e

1
2 k2

.
16. 1

a .
17. 64.3441.

18. g(y) =

{ 4
y3 if 0 < y <

√
2

0 otherwise.
19. 0.5.
20. 0.7745.
21. 0.4.

22. 2
3θ y− 1

3 e−
y

2
3
θ .

23. 4√
2π

y e−
y4
2 .

24. ln(X) ∼
∧
\(µ, σ2).

25. eµ−σ2
.

26. eµ.
27. 0.3669.
29. Y ∼ GBETA(α, β, a, b).
32. (i) 1

2

√
π, (ii) 1

2 , (iii) 1
4

√
π, (iv) 1

2 .
33. (i) 1

180 , (ii) (100)13 5! 7!
13! , (iii) 1

360 .

35.
(
1− α

β

)2
.

36. E(Xn) = θn Γ(n+α)
Γ(α) .
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CHAPTER 7

1. f1(x) = 2x+3
21 , and f2(y) = 3y+6

21 .

2. f(x, y) =

{ 1
36 if 1 < x < y = 2x < 12
2
36 if 1 < x < y < 2x < 12
0 otherwise.

3. 1
18 .

4. 1
2e4 .

5. 1
3 .

6. f1(x) =
{ 2(1− x) if 0 < x < 1

0 otherwise.
7. (e2−1)(e−1)

e5 .

8. 0.2922.

9. 5
7 .

10. f1(x) =
{

5
48x(8− x3) if 0 < x < 2
0 otherwise.

11. f2(y) =
{ 2y if 0 < y < 1

0 otherwise.

12. f(y/x) =
{ 1

1+
√

1−(x−1)2
if (x− 1)2 + (y − 1)2 ≤ 1

0 otherwise.
13. 6

7 .

14. f(y/x) =
{

1
2x if 0 < y < 2x < 1
0 otherwise.

15. 4
9 .

16. g(w) = 2e−w − 2e−2w.

17. g(w) =
(
1− w3

θ3

)
6w2

θ3 .

18. 11
36 .

19. 7
12 .

20. 5
6 .

21. No.

22. Yes.

23. 7
32 .

24. 1
4 .

25. 1
2 .

26. x e−x.
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CHAPTER 8

1. 13.

2. Cov(X, Y ) = 0. Since 0 = f(0, 0) += f1(0)f2(0) = 1
4 , X and Y are not

independent.

3. 1√
8
.

4. 1
(1−4t)(1−6t) .

5. X + Y ∼ BIN(n + m, p).

6. 1
2

(
X2 − Y 2

)
∼ EXP (1).

7. M(s, t) = es−1
s + et−1

t .

9. − 15
16 .

10. Cov(X, Y ) = 0. No.

11. a = 6
8 and b = 9

8 .

12. Cov = − 45
112 .

13. Corr(X, Y ) = − 1
5 .

14. 136.

15. 1
2

√
1 + ρ .

16. (1− p + pet)(1− p + pe−t).

17. σ2

n [1 + (n− 1)ρ].

18. 2.

19. 4
3 .

20. 1.

21. 1
2 .
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CHAPTER 9

1. 6.

2. 1
2 (1 + x2).

3. 1
2 y2.

4. 1
2 + x.

5. 2x.

6. µX = − 22
3 and µY = 112

9 .

7. 1
3

2+3y−28y3

1+2y−8y2 .

8. 3
2 x.

9. 1
2 y.

10. 4
3 x.

11. 203.

12. 15− 1
π .

13. 1
12 (1− x)2.

14. 1
12

(
1− x2
)2.

15. 5
192 .

16. 1
12 .

17. 180.

19. x
6 + 5

12 .

20. x
2 + 1.
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CHAPTER 10

1. g(y) =

{ 1
2 + 1

4
√

y for 0 ≤ y ≤ 1

0 otherwise.

2. g(y) =






3
16

√
y

m
√

m
for 0 ≤ y ≤ 4m

0 otherwise.

3. g(y) =

{ 2y for 0 ≤ y ≤ 1

0 otherwise.

4. g(z) =






1
16 (z + 4) for −4 ≤ z ≤ 0

1
16 (4− z) for 0 ≤ z ≤ 4

0 otherwise.

5. g(z, x) =

{ 1
2 e−x for 0 < x < z < 2 + x <∞

0 otherwise.

6. g(y) =

{ 4
y3 for 0 < y <

√
2

0 otherwise.

7. g(z) =






z3

15000 −
z2

250 + z
25 for 0 ≤ z ≤ 10

8
15 −

2z
25 −

z2

250 −
z3

15000 for 10 ≤ z ≤ 20

0 otherwise.

8. g(u) =






4a2

u3 ln
(

u−a
a

)
+ 2a (u−2a)

u2 (u−a) for 2a ≤ u < ∞

0 otherwise.

9. h(y) = 3z2−2z+1
216 , z = 1, 2, 3, 4, 5, 6.

10. g(z) =






4h3

m
√
π

√
2z
m e−

2h2z
m for 0 ≤ z < ∞

0 otherwise.

11. g(u, v) =

{− 3u
350 + 9v

350 for 10 ≤ 3u + v ≤ 20, u ≥ 0, v ≥ 0

0 otherwise.

12. g1(u) =

{ 2u
(1+u)3 if 0 ≤ u < ∞

0 otherwise.
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13. g(u, v) =






5 [9v3−5u2v+3uv2+u3]
32768 for 0 < 2v + 2u < 3v − u < 16

0 otherwise.

14. g(u, v) =

{ u+v
32 for 0 < u + v < 2

√
5v − 3u < 8

0 otherwise.

15. g1(u) =






2 + 4u + 2u2 if −1 ≤ u ≤ 0

2
√

1− 4u if 0 ≤ u ≤ 1
4

0 otherwise.

16. g1(u) =






4
3 u if 0 ≤ u ≤ 1

4
3 u−5 if 1 ≤ u < ∞

0 otherwise.

17. g1(u) =





4u

1
3 − 4u if 0 ≤ u ≤ 1

0 otherwise.

18. g1(u) =

{
2 u−3 if 1 ≤ u < ∞

0 otherwise.

19. f(w) =






w
6 if 0 ≤ w ≤ 2

2
6 if 2 ≤ w ≤ 3

5−w
6 if 3 ≤ w ≤ 5

0 otherwise.
20. BIN(2n, p)

21. GAM(θ, 2)

22. CAU(0)

23. N(2µ, 2σ2)

24. f1(α) =






1
4 (2− |α|) if |α| ≤ 2

0 otherwise,
f2(β) =

{− 1
2 ln(|β|) if |β| ≤ 1

0 otherwise.
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CHAPTER 11

2. 7
10 .

3. 960
75 .

6. 0.7627.
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CHAPTER 12
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CHAPTER 13

3. 0.115.

4. 1.0.

5. 7
16 .

6. 0.352.

7. 6
5 .

8. 100.64.

9. 1+ln(2)
2 .

10. [1− F (x6)]5.

11. θ + 1
5 .

12. 2 e−w [1− e−w].

13. 6 w2

θ3

(
1− w3

θ3

)
.

14. N(0, 1).

15. 25.

16. X has a degenerate distribution with MGF M(t) = e
1
2 t.

17. POI(1995λ).

18.
(

1
2

)n (n + 1).

19. 88

119 35.

20. f(x) = 60
θ

(
1− e−

x
θ

)3
e−

3x
θ for 0 < x <∞.

21. X(n+1) ∼ Beta(n + 1, n + 1).
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CHAPTER 14

1. N(0, 32).

2. χ2(3); the MGF of X2
1 −X2

2 is M(t) = 1√
1−4t2

.

3. t(3).

4. f(x1, x2, x3) = 1
θ3 e−

(x1+x2+x3)
θ .

5. σ2

6. t(2).

7. M(t) = 1√
(1−2t)(1−4t)(1−6t)(1−8t)

.

8. 0.625.

9. σ4

n2 2(n− 1).

10. 0.

11. 27.

12. χ2(2n).

13. t(n + p).

14. χ2(n).

15. (1, 2).

16. 0.84.

17. 2σ2

n2 .

18. 11.07.

19. χ2(2n− 2).

20. 2.25.

21. 6.37.
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CHAPTER 15

1.

√√√√ 3
n

n∑

i=1

X2
i .

2. 1
X̄−1

.

3. 2
X̄

.

4. − n
n∑

i=1

lnXi

.

5. n
n∑

i=1

lnXi

− 1.

6. 2
X̄

.

7. 4.2

8. 19
26 .

9. 15
4 .

10. 2.

11. α̂ = 3.534 and β̂ = 3.409.

12. 1.

13. 1
3 max{x1, x2, ..., xn}.

14.
√

1− 1
max{x1,x2,...,xn} .

15. 0.6207.

18. 0.75.

19. −1 + 5
ln(2) .

20. X̄
1+X̄

.

21. X̄
4 .

22. 8.

23. n
n∑

i=1

|Xi − µ|
.
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24. 1
N .

25.
√

X̄.

26. λ̂ = nX̄
(n−1)S2 and α̂ = nX̄2

(n−1)S2 .

27. 10 n
p (1−p) .

28. 2n
θ2 .

29.
(

n
σ2 0
0 n

2σ4

)
.

30.
(

nλ
µ3 0
0 n

2λ2

)
.

31. α̂ = X

β̂
, β̂ = 1

X

[
1
n

∑n
i=1 X2

i −X
]
.

32. θ̂ is obtained by solving numerically the equation
∑n

i=1
2(xi−θ)

1+(xi−θ)2 = 0.

33. θ̂ is the median of the sample.

34. n
λ .

35. n
(1−p) p2 .
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CHAPTER 16

1. b = σ2
2−cov(T1,T2)

σ2
1+σ2

2−2cov(T1,T2
.

2. θ̂ = |X| , E( |X| ) = θ, unbiased.

4. n = 20.

5. k = 1
2 .

6. a = 25
61 , b = 36

61 , ĉ = 12.47.

7.
n∑

i=1

X3
i .

8.
n∑

i=1

X2
i , no.

9. k = 4
π .

10. k = 2.

11. k = 2.

13. ln
n∏

i=1

(1 + Xi).

14.
n∑

i=1

X2
i .

15. X(1), and sufficient.

16. X(1) is biased and X − 1 is unbiased. X(1) is efficient then X − 1.

17.
n∑

i=1

lnXi.

18.
n∑

i=1

Xi.

19.
n∑

i=1

lnXi.

22. Yes.

23. Yes.
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24. Yes.

25. Yes.

26. θ̂ = 3 X.

27. θ̂ = 50
30 X.
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CHAPTER 17

7. The pdf of Q is g(q) =
{

n e−n q if 0 < q < ∞
0 otherwise.

The confidence interval is
[
X(1) − 1

n ln
(

2
α

)
, X(1) − 1

n ln
(

2
2−α

)]
.

8. The pdf of Q is g(q) =
{

1
2 e−

1
2 q if 0 < q < ∞

0 otherwise.

The confidence interval is
[
X(1) − 1

n ln
(

2
α

)
, X(1) − 1

n ln
(

2
2−α

)]
.

9. The pdf of Q is g(q) =
{

n qn−1 if 0 < q < 1
0 otherwise.

The confidence interval is
[
X(1) − 1

n ln
(

2
α

)
, X(1) − 1

n ln
(

2
2−α

)]
.

10. The pdf g(q) of Q is given by g(q) =
{

n qn−1 if 0 ≤ q ≤ 1
0 otherwise.

The confidence interval is
[(

2
α

) 1
n X(n),

(
2

2−α

) 1
n

X(n)

]
.

11. The pdf of Q is given by g(q) =
{

n (n− 1) qn−2 (1− q) if 0 ≤ q ≤ 1
0 otherwise.

12.
[
X(1) − zα

2
1√
n
, X(1) + zα

2
1√
n

]
.

13.
[
θ̂ − zα

2
θ̂+1√

n
, θ̂ + zα

2
θ̂+1√

n

]
, where θ̂ = −1 + n∑n

i=1
ln xi

.

14.
[

2
X
− zα

2

√
2

n X
2 , 2

X
+ zα

2

√
2

n X
2

]
.

15.
[
X − 4− zα

2
X−4√

n
, X − 4 + zα

2
X−4√

n

]
.

16.
[
X(n) − zα

2

X(n)

(n+1)
√

n+2
, X(n) + zα

2

X(n)

(n+1)
√

n+2

]
.

17.
[

1
4 X − zα

2
X

8
√

n
, 1

4 X + zα
2

X
8
√

n

]
.



Probability and Mathematical Statistics 689

CHAPTER 18

1. α = 0.03125 and β = 0.763.

2. Do not reject Ho.

3. α = 0.0511 and β(λ) = 1−
7∑

x=0

(8λ)xe−8λ

x!
, λ += 0.5.

4. α = 0.08 and β = 0.46.

5. α = 0.19.

6. α = 0.0109.

7. α = 0.0668 and β = 0.0062.

8. C = {(x1, x2) |x2 ≥ 3.9395}.

9. C = {(x1, ..., x10) |x ≥ 0.3}.

10. C = {x ∈ [0, 1] |x ≥ 0.829}.

11. C = {(x1, x2) |x1 + x2 ≥ 5}.

12. C = {(x1, ..., x8) |x− x lnx ≤ a}.

13. C = {(x1, ..., xn) | 35 lnx− x ≤ a}.

14. C =
{

(x1, ..., x5) |
(

x
2x−2

)5x−5
x5 ≤ a

}
.

15. C = {(x1, x2, x3) | |x− 3| ≥ 1.96}.

16. C =
{

(x1, x2, x3) | x e−
1
3 x ≤ a
}

.

17. C =
{

(x1, x2, ..., xn) |
(

e
10 x

)3x ≤ a
}

.

18. 1
3 .

19. C =
{
(x1, x2, x3) | x(3) ≤ 3

√
117
}
.

20. C = {(x1, x2, x3) | x ≥ 12.04}.

21. α = 1
16 and β = 255

256 .

22. α = 0.05.


